簡易檢索 / 詳目顯示

研究生: 盧昆賢
Lu, Kun Xian
論文名稱: 超臨界二氧化碳朗肯循環分析及與有機朗肯循環之比較
Analysis of a Supercritical CO2 Rankine Cycle and its Comparison to Organic Rankine Cycles.
指導教授: 蔣小偉
Chiang, Hsiao Wei
口試委員: 郭啟榮
Guo, Qi Rong
徐菘蔚
Hsu, Sung Wei
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 98
中文關鍵詞: 超臨界二氧化碳有機朗肯循環餘熱回收發電
外文關鍵詞: supercritical carbon dioxide, organic Rankine cycle, waste heat recovery
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   全球約有20%~50%能量以熱能形式排放至環境,其中250℃以下低溫工業餘熱可用能低不易利用,但排放量大且成本低,有機朗肯循環(ORC)系統已可有效利用此熱能發電,而若考量到熱傳性能以及環境影響,超臨界二氧化碳(S-CO2)朗肯循環具有相當高的發展潛力。
      本研究分析S-CO2朗肯循環與R134a、R245fa ORC在熱源溫度100℃和150℃之下的性能差異。考量壓力對性能和成本影響,以最大系統輸出功作為設計點。S-CO2流體密度高可大幅縮減膨脹機尺寸,且溫度曲線與熱源較相符,能更有效利用熱源能量。儘管S-CO2朗肯循環的高操作壓力使液幫浦耗功大,每單位質量工作流體所能產生的系統輸出功低於ORC,但CO2成本相對低許多,因此可藉由增加CO2質量流率來提升性能,並同時保有機組尺寸優勢。
      本研究也與漢力能源科技公司之商用ORC機組進行比較,以了解S-CO2朗肯循環與ORC的市場競爭性,根據初步評估結果,S-CO2朗肯循環適用熱源溫度約為90℃~150℃,且在此溫度範圍下溫度越高性能越好,膨脹機入口壓力則限制在140 bar以下,然而若欲將本系統商品化,仍需進行相關實驗做更進一步分析。


    About 20% ~ 50% energy is released to environment in the form of waste heat. The waste heat below 250℃ is difficult to recover due to its low thermal energy, but it has large amount and low fuel cost. ORC systems can efficiently convert this low temperature waste heat to electricity. Recently, due to the better heat transfer and low environmental impacts, S-CO2 Rankine cycle has shown pretty good potential in this field.
    A comparative study of S-CO2 Rankine cycle with R134a and R245fa ORC under 100℃ and 150℃ heat source is included in this study. Considering the pressure effect on performance and costs, the parameter settings for S-CO2 Rankine cycle are targeted on maximum power output. S-CO2 has better temperature matching with heat source so it can utilize heat source energy more efficiently. Besides, the high fluid density of S-CO2 can greatly reduce power unit size. Despite that the net power output per unit mass of working fluid in S-CO2 Rankine cycle is lower than that in ORCs, we can increase the mass flow rate of CO2 to improve the power output because of the very low fluid cost of CO2 compared to organic fluids.
    In order to realize the competence of S-CO2 Rankine cycle in real market, a comparative study with ORCs from Han Power is also included. Heat source temperature between 90℃~150℃ and inlet pressure of expander under 140 bar are recommended for S-CO2 Rankine cycle. But to commercialize S-CO2 Rankine cycle system, further studies and experiments on real equipment cost and component size are required.

    中文摘要 I 英文摘要 II 致謝 III 圖目錄 VII 表目錄 X 符號說明 XII 第一章 、 緒論 1 1-1、低溫熱回收發電 1 1-2、工作流體 3 1-3、研究動機 5 1-4、研究目的 5 第二章 、 文獻回顧 7 2-1、有機朗肯循環(ORC) 7 2-2、S-CO2朗肯循環 12 2-3、S-CO2與其他工作流體比較 16 2-3.1、蒸氣 16 2-3.2、R123 17 2-3.3、R125 17 2-3.4、R125、乙烷 18 2-3.5、R245fa 19 2-4、成本分析及經濟效益 20 第三章 、 研究系統與原理介紹 21 3-1、朗肯循環基本原理 21 3-2、超臨界朗肯循環 22 3-3、超臨界流體 23 3-4、熱交換器 24 3-4.1、殼管式熱交換器 25 3-4.2、平板式熱交換器 26 3-4.3、污垢因子 27 3-5、膨脹機 28 3-5.1、螺桿式膨脹機 29 3-5.2、渦輪式膨脹機 31 第四章 、 研究方法 35 4.1、理論分析 35 4-1.1、熱力分析(1st law analysis) 35 4-1.2、可用能分析(2nd law analysis) 37 4.2、數值模型 38 4-3、工作流體比較 39 4-4、漢力ORC測試環境 41 4-4.1、熱源模擬 41 4-4.2、冷源模擬 42 4-4.3、資料擷取與分析 42 第五章 、 研究結果與討論 45 5-1、數值模型驗證 45 5-2、膨脹機入口壓力及溫度之影響 47 5-3、冷凝器出口溫度之影響 52 5-4、流體特性比較-I(不考慮熱交換) 55 5-5、熱交換器夾點溫度 57 5-6、流體特性比較-II 59 5-7、可用能分析 67 5-8、與漢力之商用ORC比較 70 5-8.1、S-CO2VS R245fa –I 71 5-8.2、S-CO2 VS R245fa–II 78 5-9、S-CO2朗肯循環適用溫度範圍 80 第六章 、 結論與未來建議 83 參考文獻 91

    [1]<http://www.census.gov/en.html>.
    [2]Galanis, N., Cayer, E., Roy, P., Denis, E. S., & Desilets, M. Electricity generation from low temperature sources. Journal of Applied Fluid Mechanics 2.2 (2009): 55-67.
    [3]Sims, R. E., Rogner, H. H., & Gregory, K. Carbon emission and mitigation cost comparisons between fossil fuel, nuclear and renewable energy resources for electricity generation. Energy policy 31.13 (2003): 1315-1326.
    [4]Evans, A., Strezov, V., & Evans, T. J. Assessment of sustainability indicators for renewable energy technologies. Renewable and sustainable energy reviews 13.5 (2009): 1082-1088.
    [5]Kaltschmitt, Martin, Wolfgang Streicher, & Andreas Wiese, eds. Renewable energy: technology, economics and environment. Springer Science & Business Media, 2007.
    [6]Bajpai, P., & Dash, V. Hybrid renewable energy systems for power generation in stand-alone applications: a review. Renewable and Sustainable Energy Reviews 16.5 (2012): 2926-2939.
    [7]Johnson, I., Choate, W. T., & Davidson, A. Waste Heat Recovery. Technology and Opportunities in US Industry. BCS, Inc., Laurel, MD (United States), 2008.
    [8]Chen, Y., Lundqvist, P., Johansson, A., & Platell, P. A comparative study of the carbon dioxide transcritical power cycle compared with an organic Rankine cycle with R123 as working fluid in waste heat recovery. Applied Thermal Engineering 26.17 (2006): 2142-2147.
    [9]Dai, Y., Wang, J.,& Gao, L. Parametric optimization and comparative study of organic Rankine cycle (ORC) for low grade waste heat recovery. Energy Conversion and Management 50.3 (2009): 576-582.
    [10]Roy, J. P., Mishra, M. K., & Misra, A. Parametric optimization and performance analysis of a waste heat recovery system using Organic Rankine Cycle. Energy 35.12 (2010): 5049-5062.
    [11]Vélez, F., Segovia, J. J., Martín, M. C., Antolín, G., Chejne, F., & Quijano, A. Comparative study of working fluids for a Rankine cycle operating at low temperature. Fuel Processing Technology 103 (2012): 71-77.
    [12]Hung, T. C., Shai, T. Y., & Wang, S. K. A review of organic Rankine cycles (ORCs) for the recovery of low-grade waste heat. Energy 22.7 (1997): 661-667.
    [13]<http://www.hanbell.com>
    [14]El-Wakil, Mohamed Mohamed. Powerplant technology. Tata McGraw-Hill Education, 1984.
    [15]Chen, H., Goswami, D. Y., & Stefanakos, E. K. A review of thermodynamic cycles and working fluids for the conversion of low-grade heat. Renewable and sustainable energy reviews 14.9 (2010): 3059-3067.
    [16]Chen, Y., Lundqvist, P., & Platell, P. Theoretical research of carbon dioxide power cycle application in automobile industry to reduce vehicle’s fuel consumption. Applied Thermal Engineering 25.14 (2005): 2041-2053.
    [17]Cayer, E., Galanis, N., & Nesreddine, H. Parametric study and optimization of a transcritical power cycle using a low temperature source. Applied Energy 87.4 (2010): 1349-1357.
    [18]Cayer, E., Galanis, N., Desilets, M., Nesreddine, H., & Roy, P. Analysis of a carbon dioxide transcritical power cycle using a low temperature source. Applied Energy 86.7 (2009): 1055-1063.
    [19]Schuster, A., Karellas, S., & Aumann, R. Efficiency optimization potential in supercritical Organic Rankine Cycles. Energy 35.2 (2010): 1033-1039.
    [20]Saleh, B., Koglbauer, G., Wendland, M., & Fischer, J. Working fluids for low-temperature organic Rankine cycles. Energy 32.7 (2007): 1210-1221.
    [21]陳雲飛. Research and Development of a Supercritical Organic Rankine Cycle (SORC) Turbine. 國立清華大學動力機械工程學系碩士論文 (2015).
    [22]Hsu, S.W. Performance Analyses and Experimental Studies on Screw-Expander ORCs for Low grade Heat to Power (PhD thesis). National Tsing Hua University, Taiwan (2013).
    [23]Dostal, V., Driscoll, M. J., & Hejzlar, P. A supercritical carbon dioxide cycle for next generation nuclear reactors. Massachusetts Institute of Technology. Dept. of Nuclear Engineering, Cambridge, MA, Paper No. MIT-ANP-TR-100 (2004).
    [24]United Nations Environment Programme (UNEP). Technical options committee. Montreal protocol on substances that deplete the ozone layer. Report of the refrigeration, air conditioning and heat pumps; 1998.
    [25]<http://www.acrib.org.uk/>
    [26]Powell, R. L. CFC phase-out: have we met the challenge?. Journal of Fluorine Chemistry 114.2 (2002): 237-250.
    [27]Vélez, F., Chejne, F., Antolin, G., & Quijano, A. Theoretical analysis of a transcritical power cycle for power generation from waste energy at low temperature heat source. Energy Conversion and Management 60 (2012): 188-195.
    [28]Vélez, F., Segovia, J., Chejne, F., Antolín, G., Quijano, A., & Martín, M. C. Low temperature heat source for power generation: Exhaustive analysis of a carbon dioxide transcritical power cycle. Energy 36 (2011) 5497e5507
    [29]Persichilli, M., Kacludis, A., Zdankiewicz, E., & Held, T. Supercritical CO2 Power Cycle Developments and Commercialization: Why sCO2 can Displace Steam Ste. Power-Gen India & Central Asia (2012).
    [30]游勝傑. 國內能源回收再利用現況. 能資源整合技術圓桌論壇暨永續環境研討會 (2013)
    [31]Amini, A., Mirkhani, N., Pourfard, P. P., Ashjaee, M., & Khodkar, M. A. Thermo-economic optimization of low-grade waste heat recovery in Yazd combined-cycle power plant (Iran) by a CO 2 transcritical Rankine cycle. Energy 86 (2015): 74-84.
    [32]Liu, C., He, C., Gao, H., Xie, H., Li, Y., Wu, S., & Xu, J. The environmental impact of organic Rankine cycle for waste heat recovery through life-cycle assessment. Energy 56 (2013): 144-154.
    [33]Karellas, S., & Schuster, A. Supercritical fluid parameters in organic Rankine cycle applications. International Journal of Thermodynamics 11.3 (2008): 101-108.
    [34]hen, H., Goswami, D. Y., Rahman, M. M., & Stefanakos, E. K. A supercritical Rankine cycle using zeotropic mixture working fluids for the conversion of low-grade heat into power. Energy 36.1 (2011): 549-555.
    [35]Quoilin, S., Declaye, S., Legros, A., Guillaume, L., & Lemort, V. Working fluid selection and operating maps for Organic Rankine Cycle expansion machines. Proceedings of the 21st international compressor conference at Purdue (2012).
    [36]洪祖全, & 傅懷慧. 有機朗肯循環系統實驗迴路建立與最佳化設計研究 (2006).
    [37]郭啟榮, 李毓仁, 郭吟翎, & 徐菘蔚. 10瓩螺桿膨脹機動力之有機朗肯循環機組開發與測試. 工業技術研究院 (2011).
    [38]徐菘蔚, 郭啟榮, 李毓仁, & 蔣小偉. ORC系統中R-245fa在板式蒸發器之沸騰熱傳特性研究. 工業技術研究院 (2012).
    [39]徐菘蔚, 郭啟榮, 李毓仁, 郭吟翎, 張凱涵, & 王啟川. R245fa 於 ORC系統中板式蒸發器之熱傳特性分析, 工業技術研究院 (2011).
    [40]郭啟榮, 李毓仁, 郭吟翎, 徐松蔚, & 王佰祥. 千瓦螺杆膨脹機動力之有機郎肯循環機组開發與測試.台灣冷凍空調學會ERAC (2011).
    [41]潘懷宗, 劉晉魁, 周良穎, 謝秉甫, & 李沐勳. 利用超臨界二氧化碳萃取肉桂中之精油成份:並與水蒸氣蒸餾法進行比較. 中醫藥雜誌, vol. 5, pp. 199-207 (1994).
    [42]賈澤民, 徐明生. 霧化噴嘴對超臨界流體清洗機構效率之改善. 航空太空及民航學刊. B(41), 17-23 (2009).
    [43]Brown, Z. K., Fryer, P. J., Norton, I. T., Bakalis, S., & Bridson, R. H. Drying of foods using supercritical carbon dioxide—Investigations with carrot. Innovative Food Science & Emerging Technologies 9.3 (2008): 280-289.
    [44]曾盛達. 汽車CO2冷凍空調系統. 中華水電冷凍空調月刊(2007).
    [45]Wright, S. A., Radel, R. F., Vernon, M. E., Rochau, G. E., & Pickard, P. S. Operation and analysis of a supercritical CO2 brayton cycle. Sandia Report, No. SAND2010-0171 (2010).
    [46]Yamaguchi, H., Zhang, X. R., Fujima, K., Enomoto, M., & Sawada, N. Solar energy powered Rankine cycle using supercritical CO 2. Applied Thermal Engineering 26.17 (2006): 2345-2354.
    [47]Zhang, X. R., Yamaguchi, H., & Uneno, D. Experimental study on the performance of solar Rankine system using supercritical CO 2. Renewable Energy 32.15 (2007): 2617-2628.
    [48]Baik, Y. J., Kim, M., Chang, K. C., & Kim, S. J. Power-based performance comparison between carbon dioxide and R125 transcritical cycles for a low-grade heat source. Applied Energy 88.3 (2011): 892-898.
    [49]Guo, T., Wang, H., & Zhang, S. Comparative analysis of CO2-based transcritical Rankine cycle and HFC245fa-based subcritical organic Rankine cycle using low-temperature geothermal source." Science China Technological Sciences 53.6 (2010): 1638-1646.
    [50]郭啟榮, 黃啟順, & 洪景元. 低階ORC發電站性能優化及效益評估. 中國工程師學會會刊, vol. 87 NO.6, pp. 20-27 (2014).
    [51]Li, M., Wang, J., Li, S., Wang, X., He, W., & Dai, Y. Thermo-economic analysis and comparison of a CO 2 transcritical power cycle and an organic Rankine cycle. Geothermics 50 (2014): 101-111.
    [52]Musgrove, G.O., Rimpel, A.M., & Wilkes, J.C., Tutorial: Applications of Supercritical CO2 Power Cycles: Fundamentals and Design Considerations International Gas Turbine and Aeroengine Congress and Exposition, Copenhagen (2012).
    [53]Larjola, J. Electricity from industrial waste heat using high-speed organic Rankine cycle (ORC). International journal of production economics 41.1 (1995): 227-235.
    [54]Sarkar, J "Review and future trends of supercritical CO 2 Rankine cycle for low-grade heat conversion." Renewable and Sustainable Energy Reviews 48 (2015): 434-451.
    [55]<http://www1.chem.leeds.ac.uk//People/CMR/criticalpics.html>
    [56]王啟川. 熱交換設計,五南出版社(2014)
    [57]興業證券. 螺桿膨脹機—空間廣闊的低品位餘熱回收裝備.
    [58]S. L. Dixon, B. Eng., PH.D. “Fluid Mechanics” Thermodynamics of Turbomachinery, 4^thEdition.
    [59]Wei, D., Lu, X., Lu, Z., & Gu, J. Dynamic modeling and simulation of an Organic Rankine Cycle (ORC) system for waste heat recovery. Applied Thermal Engineering 28.10 (2008): 1216-1224.
    [60]S Baral, S., Kim, D., Yun, E., & Kim, K. C. Energy, exergy and performance analysis of small-scale organic Rankine cycle systems for electrical power generation applicable in rural areas of developing countries. Energies 8.2 (2015): 684-713
    [61]REFPROP Version 8.0, NIST standard reference database 23; 2007.
    [62]<http://www.kaori-taiwan.com/index-c.html>

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE