簡易檢索 / 詳目顯示

研究生: 沈宏欽
Hung-Chin Shen
論文名稱: 釕金屬催化末端炔類分子的轉化反應
Ruthenium-Catalyzed Transformation of Terminal Alkyne
指導教授: 劉瑞雄
Rai-Shung Liu
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 509
中文關鍵詞: 釕金屬催化切割CC三鍵環化多苯分子
外文關鍵詞: Carbon- Carbon Triple Bond Cleavage, Aromatization, Cyclization, Polycyclic Aromatics, Vinylidene, Allenylidenium, Ruthenium-Catalyzed
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有機金屬在近幾十年來已被廣泛地應用於有機合成反應上,不論是用於分子間的偶合反應、分子的環化或是開環反應,有機金屬在有機合成的應用上已不可或缺了。在有機金屬催化反應領域裡,不但能具有好的化學位向選擇性,也能有好的立體位向選擇性。在天然物這種需要精準控制位向的合成中,有機金屬扮演著重要的角色。
    本論文著重於釕金屬催化末端炔類分子的轉化反應。前半段以釕金屬催化在有機合成為主。包含第一部分:釕金屬應用於碳碳三鍵的裂解反應(Ruthenium-Catalyzed Transformation of Aryl and Alkynyl Propargyl Ether into Aryl and Alkynyl Ketones via a Carbon-Carbon Triple Bond Cleavage),第二部分:釕金屬應用於苯烯炔分子的環化反應(Ruthenium-Catalyzed Aromatization of Aromatic Enynes via the 1,2-Migration of Aryl Groups : A New Process Involving Electrocyclization and Skeletal Rearrangement),以及第三部份:釕金屬應用於亞胺炔分子的環化反應(Ruthenium-Catalyzed Cyclization of 3-En-1-ynyl Imines with Nucleophiles via Tandem 5-exo-dig Cyclization and Nucleophilic Addition)。在這些反應,不但在溫和條件下即可進行反應,而且只需5 %的催化劑量就可以完成反應。因此,應用於有機合成時,對環境造成的污染很低,可以說是符合綠色化學的精神。
    在材料應用方面,應用釕金屬催化合成多苯分子(Polycyclic Aromatic Compounds)。因多苯分子本身分子之間具有明顯的□電子與□電子之間的作用力,造成多苯分子呈現液晶型態的堆疊。在文獻報導中,也指出多苯分子在發展有機偏光膜(Organic polarizer)、有機電晶體(Organic transistors)及太陽能電池(Photovoltaic devices)發展是很有潛力的。因此,本論文在材料部份,將著重於研發一系列多苯分子(Coronene Derivatives and Dibenzo[a.h]anthracene Derivatives),並探討其分子在E-型有機偏光膜及有機電晶體的性質。提供一種新型態的光電材料,在未來的可以應用在各式各樣大面積、低成本的電子和光電子產品中。


    Organometallics plays an essential role on organic synthesis in these decades. It was applied in coupling reactions, cyclization reactions or ring opening reactions. Organometallics catalyzed reactions not only have good regioselectivities but have good stereoselectivities. In natural products synthesis, it is very important to control stereo or regio direction in specific positions.
    We emphasize on ruthenium metal complex which apply in ethynyl alcohol catalyzed transfer reactions. First, ruthenium complex was applied on transformation of aryl and alkynyl propargyl ether into aryl and alkynyl ketones via a carbon-carbon triple bond cleavage. Second, ruthenium complex was apply on aromatization of aromatic enynes via the 1,2-migration of aryl groups. Finally, ruthenium was used in cyclization of 3-en-1-ynyl imines with nucleophiles via tandem 5-exo-dig cyclization and nucleophilic addition. These reactions worked on mild conditions and used less catalyst (5 %) without any other chemical reagents to complete the reactions. These new reactions is environmental friendly.
    On the other hand, ruthenium metal was also applied to synthesis polycyclic aromatic compounds. Polycyclic aromatic compounds which form strong □□□□interaction display discotic liquid crystal behaviors. They could be design as organic polarizers, organic transistors and photovoltaic devices. We focus on synthesizing coronene derivatives and dibenzo[a.h]anthracene derivatives to investigate the property of E-type polarizers and organic transistors. These new materials could also be applied in large area and low cost optoelectronics devices in the future.

    目錄 第一章 序論............................................................................................1 第二章 釕金屬錯合物催化末端丙炔醚類分子進行碳碳三鍵的裂解反應............................................................................................4 第一節 前言.........................................................................................4 2-1.1 有機金屬劑量反應........................................................4 2-1.2 有機金屬催化反應........................................................7 第二節 結果與討論...........................................................................11 2-2.1 催化劑TpRuPPh3(CH3CN)2PF6的設計與製備..........11 2-2.2 末端丙炔醚類分子的設計跟最佳化條件..................13 2-2.3 測試釕金屬催化劑的官能基容忍度..........................16 2-2.4 催化碳碳三鍵斷裂的反應機構的研究......................20 第三節 結論.......................................................................................22 第四節 實驗流程與數據...................................................................23 2-4.1 催化劑TpRuPPh3(CH3CN)2PF6的合成.......................23 2-4.2 化合物(3-Prop-2-ynyloxy-oct-1-ynyl)-benzene合成..24 2-4.3 化合物(1-Prop-2-ynyloxy-heptyl)-benzene合成.........25 2-4.4 化合物1-Phenyl-oct-1-yn-3-one合成..........................26 2-4.5 Spectral data for compounds 1a-1h, 2b-2g, 3a-3j, 4a-4j, 5a-5d, 6a(B), 6b(A), 6d(B)..........................................26 第五節 參考文獻...............................................................................43 第三章 釕金屬錯合物催化烯炔類分子進行分子內的環化反應......45 第一節 前言.......................................................................................45 3-1.1 釕金屬錯合物催化有機分子環化反應......................46 第二節 結果與討論...........................................................................51 3-2.1 烯炔類分子的設計跟最佳化條件..............................51 3-2.2 測試烯炔類分子官能基效應......................................53 3-2.3 1,2-芳香基取代基轉移的現象....................................55 3-2.4 同位素的測試..............................................................57 3-2.5 TpRuPF6催化環化烯炔類分子的反應機構...............58 第三節 結論.......................................................................................60 第四節 實驗流程與數據...................................................................61 3-4.1 化合物1-Ethynyl-2-vinylbenzene合成.......................61 3-4.2 化合物Naphthalene合成.............................................62 3-4.3 Spectral data for compounds 7a, 7h, 7i, 8a, 8h, 8i, 9a~9l, 10a(A)~10l(A), 10a(B)~10l(B)....................................63 第五節 參考文獻...............................................................................84 第四章 釕金屬錯合物催化亞胺末端炔類分子進行分子內的環化反應..............................................................................................86 第一節 前言.......................................................................................86 4-1.1 金屬錯合物催化碳氧或碳氮雙鍵的炔化合物環化反應....................................................................................87 第二節 結果與討論...........................................................................91 4-2.1 合成高活性的亞胺基末端炔分子跟最佳化條件......91 4-2.2 環化亞胺基端炔分子的官能基與親核基的測試反應..................................................................................93 4-2.3 環化亞胺基端炔分子反應機構的探討......................96 第三節 結論.......................................................................................97 第四節 實驗流程與數據...................................................................98 4-4.1 化合物(5E)-4-Methoxy-N-((Z)-3-methylpent-2-en-4- ynylidene)benzenamine合成.......................................98 4-4.2 化合物(1-(4-Methoxyphenyl)-3-methyl-1H-pyrrol-2- yl)methanol合成..........................................................99 4-4.3 Spectral data for compounds 11a~11l, 12a~12l, 14a~ 14i...............................................................................100 第五節 參考文獻..............................................................................117 第五章 運用釕金屬錯合物催化烯炔分子合成一系列的多苯環化合物............................................................................................119 第一節 前言......................................................................................119 5-1.1 多苯環的化合物的簡介及應用性............................120 5-1.2 運用TpRuPF6催化製備聯苯化合物最佳環化條件.121 5-1.3 雜環分子π電子的環化測試.....................................124 第二節 碟狀多苯環分子的研究.....................................................126 5-2.1 圓盤型液晶的介紹....................................................126 5-2.2 簡介E型與O型(Ordinary type)偏光片...................127 5-2.3 小分子型態的圓盤狀分子發展與研究....................129 5-2.4 經雙環化後獲得小型的碟狀分子............................133 5-2.5 環化Coronene分子的最佳條件................................135 5-2.6 環化含不同取代的Coronene分子測試....................138 5-2.7 Coronene分子的基本量測與討論............................140 第三節 線型多苯環分子的研究.....................................................142 5-3.1 有機薄膜電晶體(OTFTs)的介紹與發展..................142 5-3.2 小分子型態的直線狀分子發展與研究....................143 5-3.3 設計製備化合物21a..................................................146 5-3.4 催化環化製備Dibenzo[a.h]anthracene分子.............147 5-3.5 Dibenzo[a.h]anthracene分子的基本量測與討論.....150 第四節 結論.....................................................................................154 第五節 實驗流程與數據.................................................................155 5-5.1 化合物Phenanthrene製備..........................................155 5-5.2 化合物Coronene製備................................................156 5-5.3 化合物Dibenzo[a.h]anthracene製備.........................157 5-5.4 Spectral data for compounds 15a, 15d, 16a, 16d, 19a~ 19h, 20a~20h, 21a~21i, 22a~22i...............................158 第六節 參考文獻.............................................................................174 附錄一 實驗部分................................................................................177 第一節 實驗藥品之中英文對照表.................................................177 第二節 實驗的一般操作.................................................................179 第三節 一般實驗步驟.....................................................................181 3-1. 氫化炔類分子.............................................................181 3-2. 氫化碳氫雙鍵.............................................................182 3-3. 氧化碳氧單鍵.............................................................183 3-4. 鹵化反應.....................................................................184 附錄二 光譜部分................................................................................185 表目錄 第二章 釕金屬錯合物催化末端丙炔醚類分子進行碳碳三鍵的裂解 表2-1 TpRuPF6催化碳碳三鍵切割最佳化的催化環境.....................14 表2-2 TpRuPF6催化含碳碳三鍵取代末端丙炔醚類化合物.............16 表2-3 TpRuPF6催化含芳香族取代末端丙炔醚類化合物.................18 表2-4 TpRuPF6催化含碳碳雙鍵取代末端丙炔醚類化合物.............19 第三章 釕金屬錯合物催化烯炔類分子進行分子內的環化反應 表3-1 TpRuPF6催化烯炔類分子最佳化的環化反應環境.................52 表3-2 TpRuPF6催化環化各類式烯炔類分子.....................................54 表3-3 1,2-芳香基取代基轉移的現象..................................................56 第四章 釕金屬錯合物催化亞胺末端炔類分子進行分子內的環化反應 表4-1 TpRuPF6催化亞胺末端炔分子環化條件最佳化.....................93 表4-2 TpRuPF6催化各類亞胺末端炔分子環化測試.........................94 表4-3 催化亞胺末端炔分子與不同的親核基的環化測試................95 第五章 運用釕金屬錯合物催化烯炔分子合成一系列的多苯環化合物 表5-1 Fürstner教授採用MClx催化烯炔化合物進行環化反應.......122 表5-2 TpRuPF6催化1-Phenyl-2-ethynylbenzene最佳環化條件......124 表5-3 雜環分子的環化測試..............................................................125 表5-4 TpRuPF6催化雙末端炔分子的環化反應測試.......................134 表5-5 Coronene分子製備的濃度效應..............................................136 表5-6 利用不同金屬催化劑嘗試製備Coronene分子......................137 表5-7 製備多取代的Coronene分子..................................................139 表5-8 Coronene分子UV吸收和PL發光波長(nm)..........................140 表5-9 無機和有機電晶體材料間載子移動率之比較......................142 表5-10 TpRuSbF6催化環化製備Dibenzo[a.h]anthracene分子........148 表5-11 Dibenzo[a.h]anthracene分子UV吸收和PL發光波長(nm).150 表5-12 Dibenzo[a.h]anthracene分子能階的理論計算(eV)..............150 表5-13 Dibenzo[a.h]anthracene分子能階的CV數據計算(eV).......153 圖目錄 第二章 釕金屬錯合物催化末端丙炔醚類分子進行碳碳三鍵的裂解 圖2-1 有機金屬劑量炔類斷裂的研究..................................................6 圖2-2 有機金屬催化碳碳三鍵斷裂經由metathesis pathway機制......7 圖2-3 有機金屬催化碳碳三鍵斷裂經由non-metathesis pathway機制 ......................................................................................................9 圖2-4 釕金屬錯合物TpRuPF6催化氫原子轉移反應.........................10 圖2-5 Pyrazole及Tp結構式................................................................11 圖2-6 催化劑TpRuPPh3(CH3CN)2PF6的合成步驟.............................12 圖2-7 設計、合成末端丙炔醚類起始物的骨架..................................12 圖2-8 末端丙炔醚類起始物起始物的合成........................................16 圖2-9 TpRuPF6催化碳碳三鍵切割反應機構的探討及推測.............21 第三章 釕金屬錯合物催化烯炔類分子進行分子內的環化反應 圖3-1 Grubbs教授過去相關Metathesis的研究發展..........................47 圖3-2 Trost教授過去相關的Ruthenium cyclopentdiene的環化研究 ....................................................................................................48 圖3-3 經由Metal vinylidene中間體達到環化加成的研究................50 圖3-4 雙烯炔類分子的合成................................................................51 圖3-5 製備化合物10a(A)與10a(B)的偶和反應................................55 圖3-6 同位素的測試............................................................................57 圖3-7 TpRuPF6催化合環反應機構的探討及推測.............................59 第四章 釕金屬錯合物催化亞胺末端炔類分子進行分子內的環化反應 圖4-1 藉由Metal-carbenoid中間體環化型態.....................................86 圖4-2 M(CO)5L與類或醯胺類的末端炔分子當量反應....................87 圖4-3 M(CO)5L催化含酮類末端炔分子轉化成環丙烷呋喃產物....88 圖4-4 [Rh(OAc)2]2催化含碳氧雙鍵的炔分子....................................89 圖4-5 碳氮雙鍵當親核基的金屬催化環化反應................................90 圖4-6 製備各類亞胺末端炔化合物以及測試催化活性....................91 圖4-7 TpRuPF6催化環化亞胺末端炔化合物反應機構的推測.........96 第五章 運用釕金屬錯合物催化烯炔分子合成一系列的多苯環化合物 圖5-1 圓盤狀及線型多芳香環分子的分子架構..............................120 圖5-2 MClx催化烯炔化合物進行環化反應的反應機制.................122 圖5-3 製備化合物15a (1-Phenyl-2-ethynylbenzene)......................123 圖5-4 極化圓盤型液晶相的分子......................................................126 圖5-5 O-型偏光片的偏光原理..........................................................127 圖5-6 E-型偏光片的偏光原理...........................................................128 圖5-7 Hexabenzocoronenes (HBCs)分子製備流程........................129 圖5-8 過去Coronene分子的製備方式..............................................131 圖5-9 Scott教授所提給的概念與合成方法......................................133 圖5-10 四末端炔取代的化合物19a製備方式.................................135 圖5-11 化合物20a塗佈的薄膜顯示圖.............................................139 圖5-12 Pentacene與Dibenzo[a.h]anthracene的分子架構................144 圖5-13 過去Dibenzo[a.h]anthracene合成的方式.............................146 圖5-14 雙末端炔取代的化合物21a製備方式.................................147 圖5-15 採用TpRuSbF6催化製備Dibenzo[a.h]anthracene................147 圖5-16 化合物21b的氘原子取代標定實驗.....................................149 圖5-17 化合物21a HOMO與 LUMO的電子雲的分佈..................152

    第二章
    (1) For review papers, see: (a) Murakami, M.; Ito, Y. In Activation of Unreactive Bonds and Organic Synthesis; Murai, S., Ed.; Springer: Berlin, 1999; p 97. (b) Rybchinski, B.; Milstein, D. Angew. Chem., Int. Ed. Engl. 1999, 38, 870. (c) Jennings, P. W.; Johnson, L. L. Chem. Rev. 1994, 94, 2241.
    (2) (a) Moriarty, R. M.; Penmasta, R.; Awasthi, A. K.; Prakash, I. J. Org. Chem. 1988, 53, 6124. (b) Sawaki, Y.; Inoue, H.; Ogata, Y. Bull. Chem. Soc. Jpn. 1983, 56, 1133.
    (3) (a) Chamberlin, R. L. M.; Rosenfeld, D. C.; Wolczanski, P. T.; Lobkovsky, E. B. Organometallics 2002, 21, 2724. (b) Figueroa, J. S.; Cummins, C. C. J. Am. Chem. Soc. 2003, 125, 4020. (c) Shrock, R. R.; Listemann, M. L.; Sturgeiff, L. G. J. Am. Chem. Soc. 1984, 106, 4067.
    (4) (a) O’Connor, J. M.; Pu, L. J. Am. Chem. Soc. 1990, 112, 9013. (b) O’Connor, J. M.; Hiibner, K. J. Chem. Soc., Chem. Commun. 1995, 1209.
    (5) (a) Cairns, G. A.; Carr, N.; Green, M.; Mahan, M. F. Chem. Commun. 1996, 2431. (b) Hayashi, N.; Ho, D. M.; Pascal, R. A., Jr. Tetrahedron Lett. 2000, 41, 4261.
    (6) Examples for alkyne metathesis, see: (a) Fürstner, A.; Mathes, C.; Lehmann, C. W. J. Am. Chem. Soc. 1999, 121, 9453. (b) Furstner, A.; Mathes, C. Org. Lett. 2001, 3, 221. (c) Bunz, U. H. F.; Kloppenberg, L. Angew. Chem., Int. Ed. 1999, 38, 478. (d) Brizius, G.; Bunz, U. H. F. Org. Lett. 2002, 4, 2829. (e) Fürstner, A.; Seidel, G. Angew. Chem., Int. Ed. 1998, 37, 1734. (f) McCullough, G. L.; Shrock, R. R. J. Am. Chem. Soc. 1984, 106, 4067.
    (7) (a) Jun, C.-H.; Lee, H.; Moon, C. W.; Hong, H.-S. J. Am. Chem. Soc. 2001, 123, 8600. (b) Lee, D.-Y.; Hong, B.-S.; Choi, E.-G.; Lee, H.; Jun, C.-H. J. Am. Chem. Soc. 2003, 125, 6372. (c) Shimada, T.; Yamamoto, Y. J. Am. Chem. Soc. 2003, 125, 6646.
    (8) Datta, S.; Chang, C.-L.; Yeh, K.-L.; Liu, R.-S. J. Am. Chem. Soc. 2003, 125, 9294.
    (9) Examples for nonmetathesis catalytic reactions involving ruthenium allenylidenium intermediates, see: (a) Trost, B. M.; Flygare, J. A. J. Am. Chem. Soc. 1992, 114, 5476. (b) Trost, B. M.; Flygare, J. A. Tetrahedron Lett. 1994, 35, 4059.
    (10) (a) Yeh, K.-L.; Liu, B.; Lo, C.-Y.; Huang, H.-L.; Liu, R.-S. J. Am. Chem. Soc. 2002, 124, 6510. (b) Yeh, K.-L.; Liu, B.; Lai, Y.-T.; Li, C.-W.; Liu, R.-S. J. Org. Chem. 2004, 69, 4692.
    (11) (a) Grandberg, I. I.; Kost, A. N. Dokl. Akad. Nauk SSSR 1961, 141, 1087. (b)Grandberg, I. I.; Kost; A. N. Zh. Obshch. Khim. 1962, 32, 1556.; J. Gen. Chem. USSR 1962, 32, 1542. (c) Trofimenko, S. J. Am. Chem. Soc. 1966, 88, 1842.
    (12) (a) Trofimenko, S. Chem. Rev. 1972, 72, 749. (b) Trofimenko, S. Chem. Rev. 1993, 93, 943.
    (13) Chan, W.-C.; Lau, C.-P.; Chen, Y.-Z.; Fang, Y.-Q.; Ng, S.-M.; Jia, G. Organometallics 1997, 16, 34.
    (14) This catalyst was prepared from treatment of CpRu(CH3CN)3PF6 with an equimolar amount of PPh3
    第三章
    (1) For review papers, see: (a) Trost, B. M. Science 1991, 254, 1471. (b) Trost, B. M. Angew. Chem. Int. Ed. Engl. 1995, 34, 259. (c) Sheldon, R. A. Chem. Ind. (London) 1992, 903. (d) Sheldon, R. A. Chem. Ind. (London) 1997, 12. (e) Trost, B. Acc. Chem. Res. 2002, 35, 695.
    (2) For recent reviews of the metal-catalyzed cyclization of enynes: (a) Aubert, C.; Buisine, O.; Malacria, M. Chem. Rev. 2002, 102, 813. (b) Mendez, M.; Mamane, V.; Fürstner, A. Chemtracts 2003, 16(7), 397.
    (3) (a) Wang, Y.; Finn, M. G. J. Am. Chem. Soc. 1995, 117, 8045. (b) Martin-Matute, B.; Nevado, C.; Cardenas, D. J.; Echavarren, A. M. J. Am. Chem. Soc. 2003, 125, 5757. (c) O’Connor, J. M.; Friese, S. J.; Tichenor, M. J. Am. Chem. Soc. 2002, 124, 3506.
    (4) (a) Nguyen, S. T.; Johnson, L. K.; Grubbs, R. H. J. Am. Chem. Soc. 1992, 114, 3974. (b) Wu, Z.; Benedicto, A. D.; Grubbs, R. H. Macromolecules 1993, 26, 4975. (c) Weck, M.; Mohr, B.; Maughon, B. R.; Grubbs, R. H. Macromolecules 1997, 30, 6430. (d) Wilhelm, T. E.; Belderrain, T. R.; Brown, S. N.; Grubbs, R. H. Organometallics 1997, 16, 3867. (e) Belderrain, T. R.; Grubbs, R. H. Organometallics 1997, 16, 4001. (f) Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org. Lett. 1999, 1, 953. (g) Trnka, T. M.; Grubbs, R. H. Acc. Chem. Res. 2001, 34, 18.
    (5) (a) Trost, B. M.; Toste D.; Pinkerton, A. B. Chem. Rev. 2001, 101, 2067. (b) Trost, B. M.; Frederiksen, M. U.; Rudd, M. T. Angew. Chem. Int. Ed. Engl. 2005, 44, 6630.
    (6) (a) Bruce, M. I.; Swincer, A. G. Adv. Organomet. Chem. 1990, 30, 1. (b)Nugent, W. A.; Mayer, J. M. Metal-Ligand Multiple Bonds; Wiley: New York, 1998. (c) Bruce, M. I.; Chem. Rev. 1991, 91, 197.
    (7) Merlic, C. A.; Pauly, M. E. J. Am. Chem. Soc. 1996, 118, 11319.
    (8) (a) Murakami, M.; Hori, S. J. Am. Chem. Soc. 2003, 125, 4720. (b) Trost, B. M.; Rhee, Y. H.; J. Am. Chem. Soc. 2002, 124, 2528. (c) Wolf, J.; Stuer, W.; Grunwald, C.; Werner, H.; Schwab, P.; Schulz, M. Angew. Chem. Int. Ed. Engl. 1998, 37, 1124. (d) Ting, P.-C.; Lin, Y.-C.; Lee, G.-H.; Cheng, M.-C.; Wang, Y. J. Am. Chem. Soc. 1996, 118, 6433.
    (9) (a) Maeyama, K.; Iwasawa, N. J. Org. Chem. 1999, 64, 1344. (b) Miura, T.; Iwasawa, N. J. Am. Chem. Soc. 2002, 124, 518.
    (10) Lo C.-Y.; Guo, H.; Lian, J.-J.; Shen, F.-M.; Liu, R.-S. J. Org. Chem. 2002, 67, 3930.
    (11) (a) Ajamian, A.; Gleason, J. L. Org, Lett. 2003, 5, 2409. (b) Dolaine, R.; Gleason, J. L. Org, Lett. 2000, 2, 1753.
    (12) (a) Roger, C.; Bodner, G. S.; Hatton, W. G.; Gladysz, J. A. Organo- metallics 1991, 10, 3266. (b) Kusama, H.; Takaya, J.; Iwasawa, N. J. Am. Chem. Soc. 2002, 124, 11592. (c) Bly, R. S.; Silverman, G. S.; Bly, R. K. J. Am. Chem. Soc. 1988, 110, 7730.
    (13) (a) Nevado, C.; Caedenas, D. J.; Echavarren, A. M. Chem. Eur. J. 2003, 9, 2627. (b) Fuerstner, A.; Mamane, V. J. Org. Chem. 2002, 67, 6264.
    第四章
    (1) For recent reviews of the metal-catalyzed cyclization of enynes: (a) Aubert, C.; Buisine, O.; Malacria, M. Chem. Rev. 2002, 102, 813. (b) Diver, S. T.; Giessert, A. J. Chem. Rev. 2004, 104, 1317. (c) Mendez, M.; Mamane, V.; Fürstner, A. Chemtracts 2003, 16(7), 397.
    (2) For selected examples: (a) Chatani, N. Furukawa, N.; Sakurai, H.; Murai, S. Organometallics 1996, 15, 901. (b) Mendez, M.; Munoz, M. P.; Nevado, C.; Caedenas, D. J.; Echavarren, A. M. J. Am. Chem. Soc. 2001, 123, 10511. (c) Nevado, C.; Cardenas, D. J.; Echavarren, A, M. Chem. Eur. J. 2003, 9, 2627. (d) Fürstner, A.; Szillat, H.; Gabor, B.; Mynott, R. J. Am. Chem. Soc. 1998, 120, 8305. (e) Fürstner, A.; Szillat, H.; Stelzer, F. J. Am. Chem. Soc. 2000, 122, 6785. (f) Fürstner, A.; Stelzer, F.; Szillat, H. J. Am. Chem. Soc. 2001, 123, 11863. (g) Marion, F.; Coulomb, J.; Courillion, C.; Fensterbank, L.; Malacria, M. Org. Lett. 2004, 6, 1509.
    (3) (a) Kato, Y.; Miki, K.; Nishino, F.; Ohe, K.; Uemura, S. Org. Lett. 2003, 5, 2619. (b) Miki, K.; Nishino, F.; Ohe, K.; Uemura, S. J. Am. Chem. Soc. 2002, 124, 5260. (c) Miki, K.; Yokoi, T.; Nishino, F.; Kato, Y.; Washitake, Y.; Ohe, K.; Uemura, S. J. Org. Chem. Soc. 2004, 69, 1557. (d) Iwasawa, N.; Shido, M.; Kusama, H. J. Am. Chem. Sco. 2001, 123, 5814. (e) Casey, C. P.; Strotman, N. A.; Guzei, I. A. Organometallics 2004, 23, 4121.
    (4) (a) Yamamoto, Y.; Kitahara, H.; Ogawa, R.; Kawaguchi, H.; Tatsumi, K.; Itoh, K. J. Am. Chem. Soc. 2000, 122, 4310. (b) Trost, B. M.; Hashmi, A. S. K. Angew. Chem., Int. Ed. Eng. 1993, 32, 1085. (c) Harrak, Y.; Blaszylowski, C.; Bernard, M.; Cariou, K.; Mainetti, E.; Mouries, V.; Dhimane, A.-L.; Fensterbank, L.; Malacria, M. J. Am. Chem. Soc. 2004, 126, 8656. (d) Mamane, V.; Gress, T.; Krause, H.; Furstner, A. J. Am. Chem. Soc. 2004, 126, 8654.
    (5) (a) Doyle, M. P.; Forbes, D. C. Chem. Rev. 1998, 98, 911. (b) Davies, H. W. L.; Beckwith, R. E. J. Chem. Rev. 2003, 103, 2861.
    (6) For recent reviews of the Doyle-Kirmse reaction: (a) Doyle, M. P.; Tamblyn, W. H.; Bagheri, V. J. Org. Chem. 1981, 46, 5094. (b) Kirmse, W.; Kapps, M. Chem. Ber. 1968, 101, 994.
    (7) Kirmse, W. In Advances in Carbene Chemistry; Brinker, U. D. Ed.; JAI Press Inc. London, England, 1994, Vol. 1, pp.1-57.
    (8) (a) Mizushima, E.; Sato, K.; Hayashi, T.; Tanaka, M. Angew. Chem. Int. Ed. 2002, 41, 4563. (b) Tokunaga, M.; Wakatsuki, Y. Angew. Chem. Int. Ed. 1998, 37, 2867. (c) Damiano, J. P.; Postel, M. J. Organomet. Chem. 1996, 522, 303. (d) Uemura, S.; Miyoshi, H.; Okano, M. J. Chem. Soc. Perkin Trans. 1, 1980, 1098. (e) Baidossi, W.; Lahav, M.; Blum, J. J. Org. Chem. 1997, 62, 669.
    (9) For catalytic reactions with catalyst TpRuPF6, see selected papers: (a) Shen, H.-C.; Pal, S.; Lian, J.-J.; Liu, R.-S. J. Am. Chem. Soc. 2003, 125, 15762. (b) Madhushaw, R. J.; Lin, M.-Y.: Abu Sohel S. M.: Liu, R.-S, J. Am. Chem. Soc. 2004, 126, 6895. (c) Madhushaw, R.-J.; Lo, C.-Y.; Huang, C.-W.; Su, M.-D.; Shen, H.-C.; Pal, S.; Shaikh, I. R.; Liu, R.-S. J. Am. Chem. Soc. 2004, 126, 15560. (d)Odedra, A.; Wu, C.-J.; Pratap, T. B.; Huang, C.-W.; Ran, Y.-F.; Liu, R.-S. J. Am. Chem. Soc. 2005, 127, 3406. (e) Lian, J.-J,; Odedra, A.; Wu, C.-J.; Liu, R.-S. J. Am. Chem. Soc. 2005, 127, 4186.
    (10) Qinhua Huang, Q.; Larock, R. C. J. Org. Chem. 2003, 68, 980.
    (11) Nishino, F.; Miki, K.; Kato, Y.; Ohe, K.; Uemura, S. Org. Lett. 2003, 5, 2615.
    (12) CpRuPR3(CH3CN)2PF6 (R = Ph, nBu, tBu and Cy) were prepared by adding an equimolar amount of PR3 to CpRu(CH3CN)3PF6 in dichloroethane.
    (13) Bustelo, E.; Carbo, J. J.; Lledos, A.; Mereiter, K.; Puerta, M. C.; Valerga, P. J. Am. Chem. Soc. 2003, 125, 3311
    第五章
    (1) For recent reviews of Polycyclic Aromatic Hydrocarbons: (a) Harvey, R. G. Polycyclic Aromatic Hydrocarbons; Wiley-VCH: New York, 1997. (b) Bjørseth, A.; Ramdahl, T. Handbook of Polycyclic Aromatic Hydro- carbons; Bjørseth, A., Ramdahl, T., Eds.; Marcel Dekker, Inc.: New York, 1985; Vol. 2, Chapter 1. (c) Dötz, F.; Brand, J. D.; Ito, S.; Gherghel, L.; Müllen, K. J. Am. Chem. Soc. 2000, 122, 7707. (d) Eickmeier, C.; Holmes, D.; Junga, H.; Matzger, A. J.; Scherhag, F.; Shim, M.; Vollhardt, K. P. C. Angew. Chem., Int. Ed. 1999, 38, 800. (e) Gold.nger, M. B.; Crawford, K. B.; Swager, T. M. J. Am. Chem. Soc. 1997, 119, 4578. (f) Yamaguchi, S.; Swager, T. M. J. Am. Chem. Soc. 2001, 123, 12087. (g) Sakurai, H.; Daiko, T.; Hirao, T. Science 2003, 301, 1878.
    (2) (a) Kraft, A.; Grimsdale, A. C.; Holmes, A. B. Angew. Chem., Int. Ed. 1998, 37, 402. (b) Sirringhaus, H.; Tessler, N.; Friend, R. H. Science 1998, 280, 1741. (c) Furuta, P.; Brooks, J.; Thompson, M. E.; Frechet, J. M. J. J. Am. Chem. Soc. 2003, 125, 13165. (d) Kulkarni, A. P.; Tonzola, C. J.; Babel, A.; Jenekhe, S. A. Chem. Mater. 2004, 16, 4556. (e) Kato, S. J. Am. Chem. Soc. 2005, 127, 11538. (f) Shao, Y.; Yang, Y. Adv. Funct. Mater. 2005, 15, 1781.
    (3) (a) Katz, H. E.; Bao, Z.; Gilat, S. L. Acc. Chem. Res. 2001, 34, 359. (b) Dodabalapur, A.; Torsi, L.; Katz, H. E. Science 1995, 268, 270. (c) Dimitrakopoulos, C. D.; Kymissis, I.; Purushothaman, S.; Neumayer, D. A.; Duncombe, P. R.; Laibowitz, R. B. Adv. Mater. 1999, 11, 1372. (d) Gundlach, D. J.; Nichols, J. A.; Zhou, L.; Jackson, T. N. Appl. Phys. Lett. 2002, 80, 2925. (e) Würthner, F. Angew. Chem., Int. Ed. 2001, 40, 1037. (f) Dimitrakopoulos, C. D.; Malenfant, P. R. L. Adv. Mater. 2002, 14, 99. (g) Horowitz, G. Adv. Mater. 1998, 10, 365.
    (4) (a) Schulz, M.; Tretiak, S.; Chernyak, V.; Mukamel, S. J. Am. Chem. Soc. 2002, 122, 452. (b) Contoret, . E. A.; Farrar, S. R.; Jackson, P. O.’ Khan, S. M.; May, L.; O’Neill, M.; Nicholls, J. E.; Kelly, S. M.; Richards, G. J. Adv. Mater. 2000, 12, 971. (c) Keum, C.-D.; Kanazawa, A.; Lkeda, T. Adv. Mater. 2001, 13, 321. (d) Culligan, S. W.; Geng, Y.; Chen, S. H.; Klubek, K.; Vaeth, K. M.; Tang, Ching. W. Adv. Mater. 2003, 15, 1176. (e) Benning, S.; Oesterhaus, R.; Kitzerow, H.-S. liq. Cryst. 2004, 31, 201.
    (5) (a) Eckert, J.-F.; Nicoud, J.-F.; Nierengarten, J.-F.; Liu, S.-G.; Echegoyen, L.; Armaroli, N.; Barigelletti, F.; Ouali, L.; Krasnikov, V.; Hadziioannou, G. J. Am. Chem. Soc. 2000, 122, 7467. (b) Cravino, A.; Sariciftci, N. S. J. Mater. Chem. 2002, 12, 1931. (c) Schmidt-Mende, L.; Fechtenkötter, A.; Müllen, K.; Moons, E.; Friend, R. H.; MacKenzie, J. D. Science 2001, 293, 1119. (d) El-Ghayoury, A.; Schenning, A. P. H. J.; van Hal, P. A.; van Duren, J. K. J.; Janssen, R. A. J.; Meijer, E. W. Angew. Chem., Int. Ed. 2001, 40, 3660. (e) Pourtois, G.; Beljonne, D.; Cornil, J.; Ratner, M. A.; Brédas, J. L. J. Am. Chem. Soc. 2002, 124, 4436.
    (6) (a) Calvo, E. L.; Wolosiuk, A. J. Am. Chem. Soc. 2002, 124, 8490. (b) Pisula, W.; Tomovic, Z.; Stepputat, M.; Kolb, U.; Pakula, T.; Müllen, K. Chem. Mater. 2005, 16, 266. (c) Palermo, V.; Morelli, S.; Simpson, C.; Müllen, K.; Samori, P. J. Mater, Chem. 2006, 16, 226. (d) Wasserfallen, D.; Kastler, M.; Pisula, W.; Hofer, W. A.; Fogel, Y.; Wang, Z.; Müllen, K. J. Am. Chem. Soc. 2006, 128, 1334.
    (7) Merlic, C. A.; Pauly, M. E. J. Am. Chem. Soc. 1996, 118, 11319.
    (8) (a) Fürstner, A.; Mamane, V. J. Org. Chem. 2002, 67, 6264. (b) Mamane, V.; Hannen, P.; Fürstner, A. Chem. Eur. J. 2004, 10, 4556.
    (9) For catalytic reactions with catalyst TpRuPF6, see selected papers: (a) Shen, H.-C.; Pal, S.; Lian, J.-J.; Liu, R.-S. J. Am. Chem. Soc. 2003, 125, 15762. (b) Madhushaw, R. J.; Lin, M.-Y.: Abu Sohel S. M.: Liu, R.-S, J. Am. Chem. Soc. 2004, 126, 6895. (c) Madhushaw, R.-J.; Lo, C.-Y.; Huang, C.-W.; Su, M.-D.; Shen, H.-C.; Pal, S.; Shaikh, I. R.; Liu, R.-S. J. Am. Chem. Soc. 2004, 126, 15560. (d)Odedra, A.; Wu, C.-J.; Pratap, T. B.; Huang, C.-W.; Ran, Y.-F.; Liu, R.-S. J. Am. Chem. Soc. 2005, 127, 3406. (e) Lian, J.-J,; Odedra, A.; Wu, C.-J.; Liu, R.-S. J. Am. Chem. Soc. 2005, 127, 4186.
    (10) (a) Berresheim, A. J.; Müller, M.; Müllen, K. Chem. Rev. 1999, 99, 1747. (b) Watson, M. D.; Fethtenkötter, A.; Müllen, K. Chem. Rev. 2001, 101, 1267. (c) Schmidt-Mende, L.; Fechtenkotter, A.; Müllen, K.; Moons, E.; Friend, R. H.; Mackenzie, J. D. Science 2001, 293, 1119. (d) Müller, M.; Kübel, C.; Müllen, K. Chem. Eur. J. 1998, 4, 2099. (e) Dötz, F.; Brand, J. D.; Ito, S.; Gherghel, L.; Müllen, K. J. Am. Chem. Soc. 2000, 122, 7707. (f) Wu, J.; Watson, M. D.; Tchebotareva, N.; Wang, Z.; Müllen, K. J. Org. Chem. 2004, 69, 8194.
    (11) 2005年,葉國良,博士論文,國立清華大學化學系
    (12) (a) Jessup, P. J.; Reiss, J. A. Aust. J. Chem. 1977, 30, 843. (b) Craig, J. T.; Halton, B.; Lo, S.-F. Aust. J. Chem. 1975, 28, 913. (c) Van Dijk, J. T. M.; Hartwijk, A.; Bleeker, A. C.; Lugtenburg, J.; Cornelusse, J. J. Org. Chem. 1996, 61, 1136. (d) Rohr, U.; Schlichting, P.; Böhm, A.; Gross, M.; Meerholz, K.; Bräuchle, C.; Müllen, K. Angew. Chem. Int. Ed. 1998, 37, 1434. (e) Zimmermann, G.; Nuechter, U.; Hagen, S.; Nuechter, M. Tetrahedron Lett. 1994, 35, 4747.
    (13) Donovan, P. M.; Scott, L. T J. Am. Chem. Soc. 2004, 126, 3108.
    (14) (a) Schon, J. H.; Kloc, C.; Bucher, E.; Batlogg, B. Nature, 2000, 403, 408. (b) Schoonveld, W. A.; Wildeman, J.; Fichou, D.; Bobbert, P. A.; Van Wees, B. J. Klapwijk, T. M. Nature, 2000, 404, 977. (c) Afzali, A.; Dimitrakopoulos, C. D.; Breen, T. L. J. Am. Chem. Soc. 2002, 124, 8812. (d) Choo, M. H.; Hong, W. S.; Im, S. Thon Solid Films 2002, 420-421, 492. (e) Garnier, F. Thin Film Transistors 2003, 301. (f) Weidkamp, K. P.; Afzali, A.; Tromp, R. M.; Hamers, R. J. J. Am. Chem. Soc. 2004, 126, 12740. (g) Chou, W.-Y.; Cheng, H.-L. Adv. Funct. Mater. 2004, 14, 811. (h) Merlo, J. A.; Newman, C. R.; Gerlach, C. P.; Kelley, T. W.; Muyres, D. V.; Fritz, S. E.; Toney, M. F.; Frisbie, C. D. J. Am. Chem. Soc. 2005, 127, 6960. (i) Pyo, K. S.; Somg, C. K. Thon Solid Films 2005, 485, 230. (j) Wang, Y.-W.; Cheng, H.-L.; Wang, Y.-K.; Hu, T.-H.; Ho, J.-C.; Lee, C.-C.; Lei, T.-F.; Yeh, C.-F. Thon Solid Films 2005, 491, 305. (k) Byun, H. S.; Xu, Y.-X.; Song, C. K. Thon Solid Films 2005, 493, 278. (l) Jin, S.-H.; Seo, H.-U.; Nam, D.-H.; Shin, W. S.; Choi, J.-H.; Yoon, U. C.; Lee, J.-W.; Song, J.-G.; Shin, D.-M.; Gal, Y.-S. J. Mater. Chem. 2005, 15, 5029.
    (15) (a) Moriconi, E. J.; O’Connor, W. F.; Schmitt, W. J.; Cogswell, G. W.; Furer, B. P. J. Am. Chem. Soc. 1960, 82, 3441. (b) Bluemer, G. P.; Gundermann, K. D.; Zander, M. Chem. Ber. 1976, 109, 1991. (c) Oesch, F.; Stillger, G.; Frank, H.; Platt, K. L. J. Org. Chem. 1982, 47, 568. (d) Platt, K. L.; Oesch, F. J. Org. Chem. 1981, 46, 2601. (e) Harvey, R. G.; Cortez, C.; Jacobs, S.A. J. Org. Chem. 1982, 47, 2120. (f) Platt, K. L.; Setiabudi, F. J. Chem. Soc., Perkin Trans. 1, 1992, 15, 2005. (g) Laali, K. K.; Okazaki, T.; Harvey, R. G. J. Org. Chem. 2001, 66, 3977. (i) Sekiya, R.; Nishikior, S.; Ogura, K. J. Am. Chem. Soc. 2004, 126, 16587.
    (16) (a) Goldfinger, M. B., Swager, T. M. J. Am. Chem. Soc. 1994, 116, 7895. (b) Tovar, J. D.; Swager, T. M. J. Org, Chem. 1999, 64, 6499. (c) Yamaguchi, S.; Swager, T. M. J. Am. Chem. Soc. 2001, 123, 12087. (d) Tovar, J. D.; Swager, T. M. J. Organomet. Chem. 2002, 215. (e) Yao, T.; Campo, M. A.; Larock, R. C. J. Org. Chem. 2005, 70, 3511. (f) Yao, T.; Campo, M. A.; Larock, R. C. Org. Lett. 2004, 6, 2677.
    (17) Bonifacio, M. C.; Robertson, C. R.; Jung, J.-Y.; King, B. T. J. Org. Chem. 2005, 70, 8522.
    (18) 2006年,王振儀,碩士論文,國立清華大學化學系

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE