研究生: |
阮昱霖 Juan, Yu-Ling |
---|---|
論文名稱: |
應用於高效率小型風力發電系統之新型無感測式最大功率追蹤控制器 A Novel Sensorless MPPT Controller For a High Efficiency Small-Scale Wind Power Generation System |
指導教授: |
潘晴財
Pan, Ching-Tsai |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 英文 |
論文頁數: | 113 |
中文關鍵詞: | 小型風力發電系統 、最大功率追蹤 、可調式虛擬慣量 、半同步整流 |
外文關鍵詞: | small-scale wind power generation system, maximum power point tracking, adjustable virtual inertia, quasi-synchronous rectification |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在現行的小型風力發電系統中,大多採用由二極體整流器與直流轉換器所組成的二級式交直流轉換器。其主要缺點為在發電機側將會產生嚴重的電流諧波失真,其不僅會降低效率亦會對風力機造成額外的機械應力進而產生擾人的機械噪音。此外,在現有的最大功率控制法中,最佳轉矩控制法廣泛應用於小型風力發電系統中。但其只考量到系統於穩態下之情況,並未考慮於風速變化下之系統動態特性。因此,在風速快速變化時,由於機械轉動慣量所造成的緩慢動態響應便會減少風力機的發電量。為了克服上述的缺點且在兼顧發電效能與成本考量下,本論文提出一新型無感測式最大功率追蹤控制器及一高效率單級式交直流轉換器。主要的貢獻可摘要如下:
首先提出一新型無感測式動態最佳轉矩最大功率追蹤控制器,其中利用所提的虛擬慣量調整法來改善風力機的動態響應進而增加其發電量。接著為改善電力品質及轉換效率,本論文提出一高效率單級式交直流轉換器來取代習用的二級式交直流轉換器。如此不僅可將發電機電流的總諧波失真大大的降低至約5%以下,同時也減小了風力機的機械應力與擾人的噪音。隨後本論文更提出一半同步整流技術來進一步降低由背接二極體所造成的導通損。另外,為了更進一步降低於不連續導通控制法下開關的切換損失,本論文遂將連續導通控制、不連續導通控制及半同步整流技術整合為一整合式控制法。本論文並實際建構一測試平台用以驗證所提理論之可行性與效能。最後,由實測結果可知本論文所提之系統整體效率能有效提升12%至15%,回收年限則能縮短11%至13%。
A well-known two-stage ac to dc converter composed of a diode bridge rectifier and a dc converter is widely used in the existing small wind power generation system (WPGS). However, due to the nonlinearity of the diode bridge rectifier, there will be significant total harmonics distortion (THD) in the generator currents which will not only reduce the efficiency but also result in additional mechanical stress and undesired acoustic noise. As to the maximum power point tracking (MPPT) controller, the widely adopted optimal torque control algorithm only concerns about the steady state characteristics of the wind turbine. However, the poor dynamic response due to the mechanical inertia effect will result in reduction of the wind turbine efficiency under rapidly changing wind speed situations. To overcome the above disadvantages, a novel sensorless dynamic MPPT controller and a high efficiency single-stage ac to dc converter are proposed in this dissertation as a compromise of both performance and cost for a small WPGS.
Basically, the major contributions of this dissertation can be briefly outlined as follows. First, a novel sensorless dynamic optimal torque MPPT control with adjustable virtual inertia technique is proposed to improve the wind turbine dynamic response and increase the output power. In addition, since the proposed novel MPPT control contains no mechanical sensors, both the reliability and cost performance index can be further improved. Second, a single-stage converter with three active switches is proposed to replace the conventional two-stage converter for improving the power quality and efficiency. The generator current THD is greatly reduced to around 5% which can reduce the corresponding mechanical stress and acoustic noise as well. Third, a novel quasi-synchronous rectification technique is proposed to further reduce the conduction losses of the body diodes. Moreover, a hybrid control composed of partial CCM, partial DCM and QSR techniques is proposed for the corresponding single-stage converter to reduce the losses. From the experimental results, one can see that the total efficiency of the whole system can be increased by 12% to 15% and the payback period is reduced by 11% to 13% approximately.
[1] AWEA. (2007, Jul.) “AWEA Small Wind Turbine Global Market Study 2007,” in the American Wind Energy Association Small Wind Systems [Online]. Available: http://www.awea.org/smallwind/
[2] AWEA. (2008, Jun.) “AWEA Small Wind Turbine Global Market Study 2008,” in the American Wind Energy Association Small Wind Systems [Online]. Available: http://www.awea.org/smallwind/
[3] A. M. Knight and G. E. Peters, “Simple wind energy controller for an expanded operation range,” IEEE Trans. Energy Convers., vol. 20, no. 2, Jun. 2005, pp. 459-466.
[4] S. Morimoto, H. Nakayama, M. Sanada, and Y. Takeda, “Sensorless output maximization control for variable-speed wind generation system using IPMSG,” IEEE Trans. Ind. Applicat., vol. 41, no. 1, Jan./Feb. 2005, pp. 60-67.
[5] K. Tan and S. Islam, “Optimum control strategies in energy conversion of PMSG wind turbine system without mechanical sensors,” IEEE Trans. Energy Convers., vol. 19, no. 2, Jun. 2004, pp. 392-399.
[6] F. Valenciaga and P. F. Puleston, “Supervisor control for a stand-alone hybrid generation system using wind and photovoltaic energy,” IEEE Trans. Energy Convers., vol. 20, no. 2, Jun. 2005, pp. 398-405.
[7] E. Koutroulis and K. Kalaitzakis, “Design of a maximum power tracking system for wind-energy-conversion applications,” IEEE Trans. Ind. Electron., vol. 53, no. 2, Apr. 2006, pp. 486-494.
[8] R. Datta and V. T, Ranganathan, “A method of tracking the peak power points for a variable speed wind energy conversion system,” IEEE Trans. Energy Convers., vol. 18, no. 1, Mar. 2003, pp. 163-168.
[9] M. Stiebler, Wind Energy Systems for Electric Power Generation. London : Springer, 2008.
[10] P. Vas, Vector Control of AC Machines. New York: Oxford University Press, 1990.
[11] R. J. Wang, M. J. Kamper, K. V. der Westhuizen and J. F. Gieras, “Optimal design of a coreless stator axial flux permanent-magnet generator,” IEEE Trans. Magnetics, vol. 41, no. 1, Jan. 2005, pp. 55-64.
[12] S. M. Hosseini, M. Agha-Mirsalim and M. Mirzaei, “Design, prototyping, and analysis of a low cost axial-flux coreless permanent-magnet generator,” IEEE Trans. Magnetics, vol. 44, no. 1, Jan. 2008, pp. 75-80.
[13] R. J. Wang and M. J. Kamper, “Calculation of eddy current loss in axial field permanent magnet machine with coreless stator,” IEEE Trans. Energy Convers., vol. 19, no. 3, Sep. 2004, pp. 532-538.
[14] G. W. Carter, Electromagnetic Field in Its Engineering Aspects. London, U.K.: Longmans, 1954.
[15] N. Mohan, T. M. Undeland and W. P. Robbins, Power Electronics: Converters, Applications, and Design (2nd edition). John Wiley, 1995.
[16] T. Emura and L. Wang, “A high-resolution interpolator for incremental encoders based on the quadrature PLL method,” IEEE Trans. Ind. Electron., vol. 47, no. 1, Feb. 2000, pp. 84-90.
[17] T. Emura, L. Wang, M. Yamanaka, and H. Nakamura, “A high-precision positioning servo controller based on phase/frequency detecting technique of two-phase-type PLL,” IEEE Trans. Ind. Electron., vol. 47, no. 6, Dec. 2000, pp. 1298-1306.
[18] G. F. Franklin, J. D. Powell, and A. Emami-Naeini, Feedback Control of Dynamic Systems. New Jersey: Prentice Hall, 2002.
[19] P. Ioannou and J. Sun, Robust Adaptive Control. Prentice Hall, 1996.
[20] M. Karrari, W. Rosehart, and O. P. Malik, “Comprehensive control strategy for a variable speed cage machine wind generation unit,” IEEE Trans. Energy Convers., vol. 20, no. 2, Jun. 2005, pp. 415-423.
[21] Z. Lubosny, Wind Turbine Operation in Electric Power Systems : Advance modeling. Berlin Heidelberg: Spinger-Verlag, 2003.
[22] O. Garcia, J. A. Cobos, R. Prieto, P. Alou and J. Uceda, “Single phase power factor correction: a survey,” IEEE Trans. Power Electron., vol. 18, no. 3, May 2003, pp. 749-755.
[23] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey and D. P. Kothari, “A review of single-phase improved power quality ac-dc converters,” IEEE Trans. Ind. Electron., vol. 50, no. 5, Oct. 2003, pp. 962-981.
[24] A. R. Prasad, P. D. Ziogas and S. Manias, “An active power factor correction technique for three-phase diode rectifier,” IEEE Trans. Power Electron., vol. 6, no. 1, Jan. 1991, pp.83-92.
[25] R. Teodorescu, F. Blaabjerg, M. Liserre, and P. C. Loh, “Proportional-resonant controllers and filters for grid-connected voltage-source converters,” IEE Proc.-Electr. Power Appl., vol. 153, no. 5, Sept. 2006, pp.750-762.
[26] J. Hu, Y. He, L. Xu, and B. W. Williams, “Improved Control of DFIG Systems During Network Unbalance Using PI-R Current Regulators,” IEEE Trans. Ind. Electron., vol. 56, no. 2, Feb. 2009, pp. 439-451.
[27] A. E. Feijoo, J. Cidras, and J. L. G. Dornelas, “Wind speed simulation in wind farms for steady-state security assessment of electrical power systems,” IEEE Trans. Energy Convers., vol. 14, no. 4, pp. 1582–1588, Dec. 1999.
[28] G. Hua and Y. Geng, “A novel control strategy of MPPT taking dynamics of wind turbine into account,” in Proc. IEEE PESC '06, Jeju, Korea, Jun. 18-22, 2006, pp. 1-6.
[29] M. Chinchilla, S. Arnaltes, and J. C. Burgos, “ Control of permanent-magnet generators applied to variable-speed wind-energy systems connected to the grid,” IEEE Trans. Energy Convers., vol. 21, no. 1, Mar. 2006, pp. 130-135.
[30] J. A. Baroudi, V. Dinavahi, and A. M. Knight, “ A review of power converter topologies for wind generators,” in IEEE International Conference on Electric Machines and Drives, May 15-18, 2005 ,pp. 458-465.
[31] F. S. Dos Reis, S. Islam, K. Tan, J. V. Alé, F. D. Adegas, and R. Tonkoski Jr, “Harmonic mitigation in wind turbine energy conversion systems,” in Proc. IEEE PESC '06, Jeju, Korea, Jun. 18-22, 2006, pp. 2748-2754.
[32] F. J. Lin and Y. S. Lin, “ A robust PM synchronous motor drive with adaptive uncertainty observer,” IEEE Trans. Energy Convers., vol. 14, no. 4, Dec. 1999, pp. 989-995.
[33] AWEA. (2002, Jun.) “The U.S. Small Wind Turbine Industry Roadmap: A 20-years industry plan for small wind turbine technology,” in the American Wind Energy Association Small Wind Systems [Online]. Available: http://www.awea.org/smallwind/
[34] A. Mirecki, X. Roboam, and F. Richardeau, “Architecture complexity and energy efficiency of small wind turbines,” IEEE Trans. Ind. Electron., vol. 54, no. 1, Feb. 2007, pp. 660-670.
[35] B. Beltran, T. Ahmed-Ali, and M. E. H. Benbouzid, “Sliding mode power control of variable-speed wind energy conversion systems,” IEEE Trans. Energy Convers., vol.23, no. 2, Jun. 2008, pp.551-558.
[36] S. K. Chung, J. H. Lee, J. S. Ko, and M. J. Youn, “Robust speed control of brushless direct-drive motor using integral variable structure control,” in IEE Proc. Electr. Power Appl., vol. 142, no. 6. Nov. 1995, pp. 361-370.
[37] M. Malinowski, S. Stynski, W. Kolomyjski, and M. P. Kazmierkowski, “Control of Three-Level PWM Converter Applied to Variable-Speed-Type Turbines,” IEEE Trans. Ind. Electron., vol. 56, no. 1, Jan. 2009, pp. 69-77.
[38] J. Kikuchi, M. D. Manjrekar, and T. A. Lipo, “Performance Improvement of Half Controlled Three Phase PWM Boost Rectifier,” in Proc. 30th Annu. IEEE Power Electron. Spec. Conf., 1999, pp. 319-324.
[39] R. Cárdenas, R. Peña, P. Wheeler, J. Clare, and G. Asher, “Control of the Reactive Power Supplied by a WECS Based on an Induction Generator Fed by a Matrix Converter,” IEEE Trans. Ind. Electron., vol. 56, no. 2, Feb. 2009, pp. 429-438.
[40] J. J. Lee, J. M. Kwon, E. H. Kim, W. Y. Choi, and B. H. Kwon, “Single-Stage Single-Switch PFC Flyback Converter Using a Synchronous Rectifier,” IEEE Trans. Ind. Electron., vol. 55, no. 3, Mar. 2008, pp. 1352-1365.
[41] C. T. Pan and Y. H. Liao, “Modeling and Control of Circulating Currents for Parallel Three-Phase Boost Rectifiers,” IEEE Trans. Ind. Electron., vol. 55, no. 7, Jul. 2008, pp. 2776-2785.
[42] P. Bajec, B. Pevec, D. Voncina, D. Miljavec, and J. Nastran, “Extending the Low-Speed Operation Range of PM Generator in Automotive Applications Using Novel AC-DC Converter Control,” IEEE Trans. Ind. Electron., vol. 52, no. 2, Apr. 2005, pp. 436-443.