簡易檢索 / 詳目顯示

研究生: 曾一洲
TSENG, I-Chou
論文名稱: 矽(111)表面形成氬隆起塊的研究
A study of the formation of Ar-filled bumps on Si(111) surface
指導教授: 羅榮立
Lo, Rong-Li
口試委員: 蘇維彬
Su, Wei-Bin
簡紋濱
Jian, Wen-Bin
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 63
中文關鍵詞: 腫塊氣泡矽(111)掃描穿隧顯微鏡表面物理
外文關鍵詞: Ar, bump, bubble, Si(111), scanning tunneling microscope, surface physics
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鈍氣族在物質中的特性已被研究了超過半個世紀,而鈍氣族在物質中所形成的氣泡會影響材料的特性。在本次的實驗中,我們將氬以1 keV的低能量轟擊至高溫的矽(111)中,氬在矽靠近表面的區域形成氣泡使表面隆起,形成"腫塊(bumps)",我們所要關注的就是這些隆起的腫塊的特性。從實驗結果中,我們觀察到了腫塊的兩種形式,碟面向上腫塊(face-on bumps)以及邊緣向上腫塊(edge-on bumps),兩種腫塊對於氬釋出的條件不同,邊緣向上腫塊因其在表面的幾何結構較容易釋出氬。此外,我們也觀察到了腫塊的周邊有因隆起而產生的裂縫,這些裂縫以及塌陷的腫塊的邊緣都順著<-110>以及<11-2>兩個方向形成,而邊緣向上腫塊則會順著<-110>形成。腫塊表面所形成的非7 × 7區域以2 × 2和c(2 × 4)為主


    Due to the formation of rare gas bubbles in materials will affect the properties of materials, the behavior of rare gases in materials have been investigated more than half century. In our work,low energy (1 keV) Ar ions were used to bombard high-temperature Si(111) surfaces to form surface bumps which are caused by the generation of Ar-filled inclusions beneath the surface. What we concerned about is the characteristics of surface bumps. From the experimental results,we observed two forms of bumps – the face-on and edge-on bumps. The two kinds of bumps have different conditions for the release of argon atoms in the bump. The edge-on bumps are more likely to release argon atoms due to its surface geometry. In addition, we also observed surface cracks on the bump edge due to the bulging.These cracks and collapsed edges of face-on bumps are along <-110> and <11-2> direction,and that of edge-on bumps are along <-110> direction.The non-7 × 7 area formed on the bumps is dominated by 2 × 2 and c(2 × 4).

    目錄 摘要 i abstract i 致謝 ii 第一章 緒論 1 1.1 前言 1.2 文獻回顧 1.3 矽(111)的表面重構 第二章 實驗環境與儀器原理 15 2.1 STM工作原理 2.2 超高真空裝置(Ultra high vacuum system) 2.3 離子槍(Ion gun) 2.4 機械幫浦(Mechanical pump) 2.5 渦輪分子幫浦(Turbo molecular pump) 2.6 鈦昇華幫浦(Titanium sublimation pump) 2.7 離子幫浦(Ion pump) 第三章 實驗方法 32 3.1 探針製備 3.2 樣品製備 3.3 實驗過程 第四章 實驗結果與討論 35 4.1 前言 4.2 氬在矽(111)表面形成之腫塊結構的演變與其特性 4.3 不同sputtering溫度下所產生之腫塊於矽(111)的差異 第五章 總結 60 參考文獻 61

    參考文獻

    [1] C.Templier. Inert Gas Bubbles in Metals: A Review, pages 117-132. Springer US, Boston, MA, (1991).
    [2] 謝璋豪. He電漿離子佈植製作Smart-Cut. 清華大學材料所碩士班論文, (2002).
    [3] R.E Hurley, S. Suder, and H.S. Gamble. Ion implantation of hydrogen and helium into silicon wafers for layer transfer in devices. Vacuum, 78(2):167-175, (2005).
    [4] P.F.P. Fichtner, J.R. Kaschny, R.A. Yankov, A. Mücklich, U. Kreißig, and W. Skorupa. Overpressurized bubbles versus voids formed in helium implanted and annealed silicon. Applied Physics Letters, 70(6):732-734, (1997).
    [5] P.F.P. Fichtner, J.R. Kaschny, M. Behar, R.A. Yankov, A. Mücklich and W. Skorupa. The effects of the annealing temperature on the formation of helium-filled structures in silicon. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 148(1):329-333, (1999).
    [6] P.F.P. Fichtner, M. Behar, G.de M. Azevedo, R.L. Maltez, R. Koegler, and W. Skorupa. He-induced cavity formation in silicon upon high-temperature implantation. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 161-163:1038-1042,(2000).
    [7] S. Frabboni, and F. Corni, and C. Nobili, and R. Tonini, and G. Ottaviani, Nanovoid formation in helium-implanted single-crystal silicon studied by in situ techniques. Phys. Rev. B, 69:165209, Apr (2004).
    [8] B.S. Li and C.H. Zhang and Y.T. Yang and L.Q. Zhang and C.L. Xu. Microstructural evolution upon annealing in Ar-implanted Si. Applied Surface Science, 257(21):9183-9187, (2011).
    [9] L. Pizzagalli, and A. Charaf-Eddin, and S. Brochard. Numerical simulations and modeling of the stability of noble gas atoms in interaction with vacancies in silicon. Computational Materials Science, 95:149-158, (2014).
    [10] L. Pizzagalli, and A. Charaf-Eddin. Migration of noble gas atoms in interaction with vacancies in silicon. Semiconductor Science and Technology, 30(8):085022, (2015).
    [11] E.A. Wood. Vocabulary of Surface Crystallography. Journal of Applied Physics, 35(4):1306_1312, (1964).
    [12] 羅榮立. 矽表面吸附粒子的辨識. 物理雙月刊, 中華民國物理學會, 25(5):687-688, (2003).
    [13] S. Bengio, and H. Ascolani, and N. Franco, and J. Avila, and M.C. Asensio, and A.M. Bradshaw, and D.P. Woodruff. Local structure determination of NH2 on Si(111)-(7X7). Phys. Rev. B, 69:125340, March (2004).
    [14] J. Tersoff, and D.R. Hamann. Theory of the scanning tunneling microscope. Phys. Rev. B, 31:805-813, Jan (1985).
    [15] 羅榮立老師提供之SolidWorks設計圖
    [16] Ion Source Power Supply IQE 11-A Manual 1.0. SPECS GmbH, (2000).
    [17] Ion Source IQE 11/35 and IQE 10/35 User’s Manual 1.1. SPECS GmbH, (2000).
    [18] The Extractor Ion Source IQE 11/35 and 10/35. SPECS GmbH, (2000).
    [19] 國科會精儀中心. 真空技術與應用. (2001).
    [20] Dr. Walter Umrath et al. Foundamental of Vacuum Technology. Oerlikon Leybold Vacuum, (2007).
    [21] Varian. Varian Ion Pumps產品型錄. (2005).
    [22] J.C. Bean, and G.E. Becker, and P.M. Petroff, and T.E. Seidel. Dependence of residual damage on temperature during Argon sputter cleaning of silicon. Journal of Applied Physics, 48(3):907-913, (1977).
    [23] J.S. Pan, and A.T.S. Wee, and C.H.A. Huan, and H.S. Tan, and K.L. Tan. Argon incorporation and silicon carbide formation during low energy argon‐ion bombardment of Si(100). Journal of Applied Physics, 79(6):2934-2941, (1996).
    [24] L.J. Huang, and W.M. Lau, and H.T. Tang, and W.N. Lennard, and I.V. Mitchell, and P.J. Schultz, and M. Kasrai. Near-surface structure of low-energy-argon-bombarded Si(100). Phys. Rev. B, 50:18453-18468, Dec (1994).
    [25] D.W. Oh and S.K. Oh and H.J. Kang and H.I. Lee and D.W. Moon. In-depth concentration distribution of Ar in Si surface after low-energy Ar+ ion sputtering. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 190(1):598-601, (2002).
    [26] M. Vallet, J.F. Barbot, A. Declémy, S. Reboh, M.F. Beaufort. Effect of the substrate orientation on the formation of He-plates in Si. Journal of Applied Physics, 114(19):193501, (2013).
    [27] N. Hueging, M. Luysberg, H. Trinkaus, K. Tillmann, K. Urban. Quantitative pressure and strain field analysis of helium precipitates in silicon. Journal of Materials Science, 41(14):4454-4465, Jul (2006).

    QR CODE