簡易檢索 / 詳目顯示

研究生: 鄭硯澤
Cheng, Yen-Tse
論文名稱: 設計新型纖維素奈米晶體感測器於潛在穿戴式應用
Design and Fabrication of cellulose nanocrystal sensors for potential wearable application
指導教授: 王威智
Wang, Wei-Chih
口試委員: 陳致真
Chen, Chih-Chen
李昇憲
Li, Sheng-Shian
黃正昇
Huang, Cheng-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 56
中文關鍵詞: 纖維素奈米晶體紡織感測器電子紡織奈米紗線電紡絲
外文關鍵詞: Cellulose nanocrystal, Textile sensor, nanofiber yarn
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文主要探討纖維素奈米晶體(Cellulose Nanocrystals)於電子紡織的應用, 纖維素奈米晶體為一種新穎的綠色材料,具有高機械強度以及獨特的化學以及光學特性,近年來已廣泛的應用在可生物分解的奈米材料或是電子元件。
    本篇論文主要分成兩個研究主題,在第一個研究,我們成功開發了一種新型的衣物纖維,具有低成本以及可拋棄式的特性。此纖維的基板為可生物降解的 PDLLA 纖維,且表面附著一層由導電高分子(PEDOT:PSS)以及纖維素奈米晶體所建構的 複合材料,具有感應外部的環境溼度的能力,藉由量測其吸脫附水氣的電阻變化值, 來得知其量測溼度的能力。研究結果發現此新型纖維可達到 2%的準確度以及快速 的反應時間(∼4 秒),相較於現今商業化的產品,此濕度計不僅具有良好的感測能 力,更達成穿戴式感測的目標。在第二個研究中,利用了傳統電紡絲的功能,來建 構一個奈米纖維紗線(nanofiber yarn)的平台,在特定的製程條件中,導電高分子 材料在電紡絲的過程中會產生自扭(self-twisting)的行為,利用此種自扭的方式, 製作了以奈米纖維組成的紗線,並且探討各項製程參數對紗線結構的影響。


    This thesis presents a series of studies in the development of cellulose nanocrystals (CNCs) nanofiber for sensors application.
    In the first study, a CNC microfiber was designed and fabricated to demonstrate humidity sensing. The sensor is made of a cellulose composite fiber. The device monitors humidity via a humidity induced electrical impedance change. The compact, efficient design of the fiber makes it ideal to incorporate into textile for applications such as body fluid monitoring and other biometrics. Preliminary result shows that the sensor has a 2% accuracy and 20 to 80% RH range. The electrical impedance changes relative linearly with relative humidity. The sensor also shows a relatively fast response (~4s) compare to current commercial available humidity sensors.
    In the second study, a method for fabricating yarn structure made of nanofiber was developed for the application of electronic textile. Concept of electrically self-twisting behavior was proven in the fabricating of PEDOT:PSS/PVA/CNC fiber composite. The two factors including the electric field and conductive treatment were found to be dominant factors for triggering the yarn formation. Moreover, the working parameter and material combination was also discussed.

    摘要................................................................................................................................. i Abstract .......................................................................................................................... ii Acknowledgements ........................................................................................................ iii Table of content ............................................................................................................. iv List of Figures ................................................................................................................ vi List of Tables .................................................................................................................. x Chapter 1. Cellulose Nanocrystals (CNCs) ...................................................................... 1 1.1 Introduction ...................................................................................................................... 1 1.2 Background & properties .................................................................................................. 2 1.2.1 Mechanical reinforcement .......................................................................................... 2 1.2.2 Self-assembly liquid crystalline .................................................................................. 3 1.2.3 Biodegradability for electronics .................................................................................. 4 1.3 Motivation for CNCs conductive composite study ............................................................. 5 Chapter 2. Introduction to smart textile ........................................................................... 6 2.1 Introduction ...................................................................................................................... 6 2.2 Background....................................................................................................................... 7 2.2.1 Intrinsic textile sensors ............................................................................................... 7 2.2.2 Introduction to yarn electrospinning ........................................................................... 9 2.2.3 Extrinsic textile sensors ............................................................................................ 11 2.4 Summary ........................................................................................................................ 12 Chapter 3. Design and fabrication of active Cellulose nanocrystal green fibers.............. 13 3.1 General description of the two CNC fiber design ............................................................. 13 3.2 Fabrication of CNC composite-coated microfiber ............................................................ 13 3.2.1 Microfiber design ..................................................................................................... 13 3.2.2 Core biodegradable fiber fabrication......................................................................... 14 3.2.3 Dip-coating of active CNC composite ...................................................................... 23 3.3 Fabrication of CNC nanofiber yarn.................................................................................. 28 3.3.1 Concept of fabrication .............................................................................................. 28 3.3.2 Experiment setup ..................................................................................................... 29 3.3.3 Mechanism of yarn structure formation .................................................................... 30 3.3.4 Exploration of the induced mechanism ..................................................................... 32 3.3.5 Parameter discussion ................................................................................................ 37 Chapter 4. Sensing application of CNC composite microfiber (humidity sensing) ......... 41 4.1 Background..................................................................................................................... 41 4.2 General description of the design..................................................................................... 41 4.2 Sensing mechanism ......................................................................................................... 43 4.3 Characterization of the humidity sensitive microfiber ...................................................... 44 4.3.1 Humidity sensing performance ................................................................................. 44 4.3.2 Hierarchical comparison........................................................................................... 48 Chapter 5. Conclusion & Future direction ..................................................................... 49 5.1 Conclusion ...................................................................................................................... 49 5.2 Future direction ............................................................................................................... 49 5.2.1 Potential application for humidity-sensitive microfiber ............................................. 50 5.2.2 Potential application for conductive nanofiber yarn .................................................. 51 Reference ...................................................................................................................... 52

    [1] Habibi, Y., Lucia, L. A., & Rojas, O. J. (2010). Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications. Chemical Reviews,110(6), 3479-3500.
    [2] Klemm, D., Heublein, B., Fink, H., & Bohn, A. (2005). Cellulose: Fascinating Biopolymer and Sustainable Raw Material. ChemInform,36(36).
    [3] Domingues, R. M., Gomes, M. E., & Reis, R. L. (2014). The Potential of Cellulose Nanocrystals in Tissue Engineering Strategies. Biomacromolecules,15(7), 2327-2346.
    [4] Iwamoto, S., Kai, W., Isogai, A., & Iwata, T. (2009). Elastic Modulus of Single Cellulose Microfibrils from Tunicate Measured by Atomic Force Microscopy. Biomacromolecules,10(9), 2571-2576.
    [5] Zhou, C., Chu, R., Wu, R., & Wu, Q. (2011). Electrospun Polyethylene Oxide/Cellulose Nanocrystal Composite Nanofibrous Mats with Homogeneous and Heterogeneous Microstructures. Biomacromolecules,12(7), 2617-2625.
    [6] Khan, A., Khan, R. A., Salmieri, S., Le Tien, C., Riedl, B., Bouchard, J., Chauve, G., Tan, V., Kamal, M. R., Lacroix, M (2012). Mechanical and barrier properties of nanocrystalline cellulose reinforced chitosan based nanocomposite films. Carbohydrate Polymers,90(4), 1601-1608.
    [7] Yang, J., Han, C., Duan, J., Xu, F., & Sun, R. (2013). Mechanical and Viscoelastic Properties of Cellulose Nanocrystals Reinforced Poly(ethylene glycol) Nanocomposite Hydrogels. ACS Applied Materials & Interfaces,5(8), 3199-3207.
    [8] Revol, J., Bradford, H., Giasson, J., Marchessault, R., & Gray, D. (1992). Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. International Journal of Biological Macromolecules,14(3), 170-172.
    [9] C. (1998). Introduction to Liquid Crystal.
    [10] Mattana, G., Briand, D., Marette, A., Quintero, A. V., & de Rooij, N. F. (2015). Polylactic acid as a biodegradable material for all-solution-processed organic electronic devices. Organic Electronics,17, 77-86.
    [11] Zhou, Y., Fuentes-Hernandez, C., Khan, T. M., Liu, J., Hsu, J., Shim, J. W., Amir., D., Jeffrey., Y., Moon., R., Kippelen, B. (2013). Recyclable organic solar cells on cellulose nanocrystal substrates. Scientific Reports,3(1).
    [12] Kaushik, M., & Moores, A. (2016). Review: Nanocelluloses as Versatile Supports for Metal Nanoparticles and Their Applications in Catalysis. ChemInform,47(13).
    [13] Lizundia, E., Nguyen, T., Vilas, J., Hamad, W. Y., & Maclachlan, M. J. (2017). Chiroptical, morphological and conducting properties of chiral nematic mesoporous cellulose/polypyrrole composite films. Journal of Materials Chemistry A,5(36), 19184-19194.
    [14] Stoppa, M., & Chiolerio, A. (2014). Wearable Electronics and Smart Textiles: A Critical Review. Sensors,14(7), 11957-11992.
    [15] Honegger, E. (1938). Training For Technical Management In The Textile Industry At The Swiss Federal Institute Of Technology. Journal of the Textile Institute Proceedings,29(7).
    [16] Castano, L. M., & Flatau, A. B. (2014). Smart fabric sensors and e-textile technologies: a review. Smart Materials and Structures,23(5).
    [17] Ataman, C., Kinkeldei, T., Vasquez-Quintero, A., Molina-Lopez, F., Courbat, J., Cherenack, K., Briand, D., Tröster, G. and de Rooij, N. (2011). Humidity and Temperature Sensors on Plastic Foil for Textile Integration. Procedia Engineering, 25, pp.136-139.
    [18] Yamada, T., Hayamizu, Y., Yamamoto, Y., Yomogida, Y., Izadi-Najafabadi, A., Futaba, D. N., & Hata, K. (2011). A stretchable carbon nanotube strain sensor for human-motion detection. Nature Nanotechnology,6(5), 296-301.
    [19] Lee, J., Shin, M., Kim, S., Cho, H., Spinks, G., Wallace, G., Lima, M., Lepró, X., Kozlov, M., Baughman, R. and Kim, S. (2013). Ultrafast charge and discharge biscrolled yarn supercapacitors for textiles and microdevices. Nature Communications, 4.
    [20] Matthews, J. A., Wnek, G. E., Simpson, D. G., & Bowlin, G. L. (2002). Electrospinning of Collagen Nanofibers. Biomacromolecules,3(2), 232-238.
    [21] Kim, K. W., Lee, K. H., Khil, M. S., Ho, Y. S., & Kim, H. Y. (2004). The effect of molecular weight and the linear velocity of drum surface on the properties of electrospun poly(ethylene terephthalate) nonwovens. Fibers and Polymers,5(2), 122-127.
    [22] Li, D., Wang, Y., & Xia, Y. (2004). Electrospinning Nanofibers as Uniaxially Aligned Arrays and Layer-by-Layer Stacked Films. Advanced Materials,16(4), 361-366.
    [23] Dalton, P. D., Klee, D., & Möller, M. (2005). Electrospinning with dual collection rings. Polymer,46(3), 611-614.
    [24] Teo, W., Gopal, R., Ramaseshan, R., Fujihara, K., & Ramakrishna, S. (2007). A dynamic liquid support system for continuous electrospun yarn fabrication. Polymer,48(12), 3400-3405.
    [25] Shim, B. S., Chen, W., Doty, C., Xu, C., & Kotov, N. A. (2008). Smart Electronic Yarns and Wearable Fabrics for Human Biomonitoring made by Carbon Nanotube Coating with Polyelectrolytes. Nano Letters,8(12).
    [26] Thom, D. H., Haan, M. N., Eeden, S. K. V. D., “Medically recognized urinary incontinence and risks of hospitalization, nursing home admission and mortality,” Age and Ageing 26(5), 367–374 (1997).
    [27] Harun, N., Ali, R., Ali, A., & Yahy, M. (2012). Resistive-type Humidity Sensor Based on CA-NH4BF4-PEG600 Thin Films. Physics Procedia,25, 221-226.
    [28] Su, P., & Wang, C. (2007). Novel flexible resistive-type humidity sensor. Sensors and Actuators B: Chemical,123(2), 1071-1076.
    [29] Sheikh, Z., Najeeb, S., Khurshid, Z., Verma, V., Rashid, H., & Glogauer, M. (2015). Biodegradable Materials for Bone Repair and Tissue Engineering Application. Materials,8(9), 5744-5794.
    [30] Wisniak, J. (2001). Frederick Thomas Trouton: The Man, the Rule, and the Ratio. The Chemical Educator,6(1), 55-61.
    [31] Kolte, M. I., Szabo, P., & Hassager, O. (1998). Capillary Thinning of Polymeric Filaments. Progress and Trends in Rheology V,361-362.
    [32] Lee, K., & Jung, H. (2012). Drawing lithography for microneedles: A review of fundamentals and biomedical applications. Biomaterials,33(30), 7309-7326.
    [33] An, J., 2012. Engineering Scaffolds for Restorative Tissue Repair of Tendon via Polycaprolactone Microfiber and Polycaprolactone Membrane (PhD thesis), Nanyang Technological University, Singapore
    [34] Livage, J. (2004). Biological Applications of Sol-Gel Glasses. Sol-Gel Technologies for Glass Producers and Users,399-402.
    [35] Landau LD, Levich VG (1942) Dragging of a liquid by a moving plate. Acta Phys Chim URSS 17:42–54
    [36] González, A. G., Diez, J. A., Gratton, R., Campana, D. M., & Saita, F. A. (2010). Instability of a viscous liquid coating a cylindrical fibre. Journal of Fluid Mechanics,651, 117.
    [37] Prathapan, R., Berry, J. D., Fery, A., Garnier, G., & Tabor, R. F. (2017). Decreasing the Wettability of Cellulose Nanocrystal Surfaces Using Wrinkle-Based Alignment. ACS Applied Materials & Interfaces,9(17), 15202-15211.
    [38] Murphy, E. J. (1928). “Electrical Conduction in Textiles. II. Alternating Current Conduction in Cotton and Silk,” The Journal of Physical Chemistry 33(2), 200–215.
    [39] Beck-Candanedo, S., Roman, M., & Gray, D. G. (2005). Effect of Reaction Conditions on the Properties and Behavior of Wood Cellulose Nanocrystal Suspensions. Biomacromolecules, 6(2), 1048-1054.
    [40] Kim, W. H., Makinen, A. J., Nikolav, N., Shashidhar, R., Kim, H., & Kafafi, Z. H. (2002). Molecular organic light-emitting diodes using highly conductive and transparent polymeric anodes. Organic Light-Emitting Materials and Devices V.
    [41] Kim, J. Y., Lee, K., Coates, N. E., Moses, D., Nguyen, T., Dante, M., & Heeger, A. J. (2007). Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing. Science, 317(5835), 222-225
    [42] Pandya, H. J., Park, K., & Desai, J. P. (2015). Design and fabrication of a flexible MEMS-based electro-mechanical sensor array for breast cancer diagnosis. Journal of Micromechanics and Microengineering, 25(7), 075025
    [43] Chou, T., Chen, S., Chiang, Y., Lin, Y., & Chao, C. (2015). Highly conductive PEDOT:PSS films by post-treatment with dimethyl sulfoxide for ITO-free liquid crystal display. J. Mater. Chem. C,3(15), 3760-3766.
    [44] Dimitriev, O., Grinko, D., Noskov, Y., Ogurtsov, N., & Pud, A. (2009). PEDOT:PSS films—Effect of organic solvent additives and annealing on the film conductivity. Synthetic Metals,159(21-22), 2237-2239.
    [45] Zhang, F., Johansson, M., Andersson, M., Hummelen, J., & Inganäs, O. (2002). Polymer Photovoltaic Cells with Conducting Polymer Anodes. Advanced Materials,14(9), 662-665.
    [46] Fehse, K., Walzer, K., Leo, K., Lövenich, W., & Elschner, A. (2007). Highly Conductive Polymer Anodes as Replacements for Inorganic Materials in High-Efficiency Organic Light-Emitting Diodes. Advanced Materials,19(3), 441-444.
    [47] Ashizawa, S., Horikawa, R., & Okuzaki, H. (2005). Effects of solvent on carrier transport in poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate). Synthetic Metals, 153(1-3), 5-8.
    [48] Ouyang, J., Chu, C., Chen, F., Xu, Q., & Yang, Y. (2005). High-Conductivity Poly(3,4-ethylenedioxythiophene):Poly(styrene sulfonate) Film and Its Application in Polymer Optoelectronic Devices. Advanced Functional Materials,15(2), 203-208.
    [49] Deitzel JM, Kleinmeyer J, Harris D, Beck Tan NC (2001). The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 42(1), 261–272.
    [50] Li, Z., & Wang, C. (2013). Effects of Working Parameters on Electrospinning. SpringerBriefs in Materials One-Dimensional nanostructures, 15-28.
    [51] Honeywell HumidIcon™ HIH7000 Series, sensing.honeywell.com/sensors/humidity-sensors/HIH7000-series.
    [52] M.S. Gong, M.H. Lee, H.W. Rhee. (2001) Humidity sensorusing cross-linkedcopolymers containing viologen moiety, Sens. Actuators B: Chem.73, 185–191.
    [53] A. Sun, Z. Li, T.Wei, Y. Li, P. Cui. (2009) Highly sensitive humidity sensor atlow humidity based on the quaternized polypyrrole composite film, Sens. Actuators B: Chem. 142, 197–203.
    [54] Zhou, G., Byun, J., Oh, Y., Jung, B., Cha, H., Seong, D., Um, M., Hyun, S. and Chou, T. (2017). Highly Sensitive Wearable Textile-Based Humidity Sensor Made of High-Strength, Single-Walled Carbon Nanotube/Poly(vinyl alcohol) Filaments. ACS Applied Materials & Interfaces, 9(5), 4788-4797.

    QR CODE