簡易檢索 / 詳目顯示

研究生: 李嘉憲
Li, Chia Hsien
論文名稱: 點缺陷與晶界對於二硒化鎢場效電晶體之影響
Point Defect and Grain Boundary Effect on WSe2 Field Effect Transistor
指導教授: 邱博文
Chiu, Po Wen
口試委員: 張文豪
Chang, Wen Hao
簡紋濱
Jian, Wen Bin
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2015
畢業學年度: 104
語文別: 中文
論文頁數: 90
中文關鍵詞: 過渡金屬二硫族化物二硒化鎢點缺陷晶界載子傳輸
外文關鍵詞: TMD, WSe2, Point defect, Grain boundary, Electrical transport
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 過渡金屬二硫族化物(Transition-metal Dichalcogenides, TMDCs),為一種二維材料的統稱,由元素週期表上部分過渡金屬元素與硫族元素組合而成。此材料具有半導體特性,塊材時為非直接能隙,當材料為單層時,因為量子侷限的效應,大部分材料轉變為直接能隙(1~2 eV),此時材料為原子級厚度具有高穿透度與可撓性,適合應用在可撓式電子元件與光學元件。目前最常見的材料製備方法為化學氣相沉積,然而與機械剝離法的樣品比較後,化學氣相沉積所合成的材料載子遷移率通常比較低,這可能是材料合成過程中,有許多缺陷產生。本實驗合成的二硒化鎢單晶,在光致螢光光譜面掃描中,可以看到螢光強度由單晶中間向外遞減,為了理解其原因,利用掃描式穿透電子顯微鏡,觀察材料的晶格結構。雖然目前化學氣相沉積已經可以成長大面積的二維材料薄膜,然而這些薄膜大部分都是由不同晶格方向的晶體組成,為多晶的薄膜,薄膜中有許多晶界,在電性傳導中扮演很重要的角色。本實驗另一個重點為尋找化學氣相沉積的二硒化鎢晶界處,經由製作二硒化鎢背閘極式電晶體,觀察電晶體通道跨過與無跨過晶界的電學性質。另外在有氧環境下,經由連續多次量測,觀察通道跨過晶界的電晶體其電性變化。


    Transition-metal Dichalcogenides (TMDCs) collectively name a series of two - dimensional materials, composed of transition metal groups and chalcogenides in the periodic table. These material have semiconducting properties, have shown atom-scale thickness, direct band gap, high transmittance and flexibility, etc. Besides these properties, TMDCs have shown outstanding performance in both flexible electronic device and optical electronic device. Very recently, it has been shown that synthesis of large film of polycrystalline monolayer TMDCs could be achieved using chemical vapor deposition (CVD). However, as compared to mechanically exfoliated samples, the CVD grown thin film typically have much lower carrier mobility, due to the growth process imperfections that induce various structural defects in the material. The first part of this thesis is inspecting the point defect in our CVD-synthesized WSe2, which exhibited PL intensity inhomogeneous.

    Synthetic 2D crystal films grown by chemical vapor deposition are typically polycrystalline, which contain many grain boundaries, these grain boundaries play an import role in the electron transport. The second part of this thesis is observing the grain boundary effects on electronic transport by fabricating WSe2 into back-gate structure field-effect transistors. Comparing the electron transport properties to the channel across the grain boundary and without the grain boundary, and using the continuous measurement to observe how the grain boundary effect with electrical transport properties in ambient condition.

    論文摘要........................................ I 目錄............................................ IV 第一章緒論...................................... 1 1.1 二維材料簡介. . . . . . . . . . . . . . . . 1 1.1.1 基本介紹. . . . . . . .. . . . . . . . . . 1 1.1.2 二維材料製備方式. . . . . . . . . . . . . 2 1.1.3 二維材料之電子元件與其他應用. . . . . . . 4 1.2 研究動機與目標. . . . . . . . . . . . . . . 9 第二章過渡金屬二硫族化物........................ 11 2.1 二硒化鎢基本介紹. . . . . . . . . . . . . . 11 2.1.1 二硒化鎢晶體結構. . . . . . . . . . . .. . 11 2.1.2 二硒化鎢電子能帶. . . . . . . . . . . . . 12 2.1.3 二硒化鎢聲子能帶. . . . . . . . . . . . . 14 2.2 二硒化鎢之物理特性. . . . . . . . . . . . . 14 2.2.1 結晶結構與缺陷. . . . . . . . . .. . . . . 15 2.2.2 拉曼散射光譜. . . . . . . . . . . . .. . . 19 2.2.3 光致螢光光譜. . . . . . . . . . . . . . . 23 2.2.4 二次諧波. . . . . . . . . . . . . . . . . 27 第三章單晶二硒化鎢的成長與控制.................. 31 3.1 實驗設備與流程介紹. . . . . . . . . .. . . . 31 3.1.1 實驗設備. . . . . . . . . . . . . . . . . 31 3.1.2 實驗流程. . . . . . . . . . . . . . . . . 32 3.2 單晶成長參數與調變結果. . . . . . . . . . . 34 3.3 單晶檢測分析. . . . . . . . . . . . . . . . 35 3.3.1 拉曼散射光譜. . . . . . . . . . . . . . . 35 3.3.2 光致螢光光譜. . . . . . . . . . . . .. . . 35 3.3.3 二次諧波. . . . . . . . . . . . . . . . . 39 3.3.4 掃描式穿透電子顯微鏡. . . . . . .. . . . . 39 第四章二維材料載子傳輸與散射.................... 45 4.1 二維材料散射源. . . . . . . . . . . .. . . . 45 4.2 二維材料晶界效應. . . . . . . .. . . . . . . 51 4.3 二硒化鎢晶界之顯示. . . . . . . . . . . . . 54 第五章二硒化鎢晶界效應電性量測與分析............ 59 5.1 二硒化鎢元件設計. . . . . . . .. . . . . . . 59 5.2 二硒化鎢元件製作. . . . . . . . . . . . . . 59 5.2.1 二硒化鎢轉移. . . . . . . . . . . . . . . 59 5.2.2 電子束微影. . . . . . . . . . . . . . .. . 60 5.2.3 熱金屬蒸鍍. . . . . . . . . . . . . . . . 62 5.2.4 電晶體量測. . . . . . . . . . . . . . . . 63 5.3 二硒化鎢元件量測與分析. . . . . . . . .. . . 64 5.3.1 有無跨過邊界. . . . . . . . . . . . .. . . 64 5.3.2 量測次數變化. . . . . . . . . . . . .. . . 65 第六章結論與展望................................ 79 參考文獻........................................ 81

    [1] M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang, “The chemistry
    of two-dimensional layered transition metal dichalcogenide nanosheets,” Nature
    chemistry, vol. 5, no. 4, pp. 263–275, 2013.
    [2] J. Wilson and A. Yoffe, “The transition metal dichalcogenides discussion and interpretation
    of the observed optical, electrical and structural properties,” Advances
    in Physics, vol. 18, no. 73, pp. 193–335, 1969.
    [3] K. S. Novoselov, A. K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, ,
    I. Grigorieva, and A. Firsov, “Electric field effect in atomically thin carbon films,”
    Science, vol. 306, no. 5696, pp. 666–669, 2004.
    [4] K. Novoselov, D. Jiang, F. Schedin, T. Booth, V. Khotkevich, S. Morozov, and
    A. Geim, “Two-dimensional atomic crystals,” Proc. Natl. Acad. Sci. U. S. A.,
    vol. 102, no. 30, pp. 10451–10453, 2005.
    [5] K.-K. Liu, W. Zhang, Y.-H. Lee, Y.-C. Lin, M.-T. Chang, C.-Y. Su, C.-S. Chang,
    H. Li, Y. Shi, H. Zhang, et al., “Growth of large-area and highly crystalline mos2
    thin layers on insulating substrates,” Nano Lett., vol. 12, no. 3, pp. 1538–1544,
    2012.
    [6] J. Putz and M. A. Aegerter, “Mos x thin films by thermolysis of a single-source
    precursor,” J. Sol-Gel Sci. Technol., vol. 19, no. 1-3, pp. 821–824, 2000.
    [7] Y. Zhang, Y. Zhang, Q. Ji, J. Ju, H. Yuan, J. Shi, T. Gao, D. Ma, M. Liu, Y. Chen,
    et al., “Controlled growth of high-quality monolayer ws2 layers on sapphire and
    imaging its grain boundary,” ACS nano, vol. 7, no. 10, pp. 8963–8971, 2013.
    [8] J.-K. Huang, J. Pu, C.-L. Hsu, M.-H. Chiu, Z.-Y. Juang, Y.-H. Chang, W.-H. Chang,
    Y. Iwasa, T. Takenobu, and L.-J. Li, “Large-area synthesis of highly crystalline
    wse2 monolayers and device applications,” ACS nano, vol. 8, no. 1, pp. 923–930,
    2013.
    [9] Y.-H. Lee, L. Yu, H. Wang, W. Fang, X. Ling, Y. Shi, C.-T. Lin, J.-K. Huang, M.-T.
    Chang, C.-S. Chang, et al., “Synthesis and transfer of single-layer transition metal
    disulfides on diverse surfaces,” Nano Lett., vol. 13, no. 4, pp. 1852–1857, 2013.
    [10] Y. Zhan, Z. Liu, S. Najmaei, P. M. Ajayan, and J. Lou, “Large-area vapor-phase
    growth and characterization of mos2 atomic layers on a sio2 substrate,” Small,
    vol. 8, no. 7, pp. 966–971, 2012.
    [11] Y.-C. Lin, W. Zhang, J.-K. Huang, K.-K. Liu, Y.-H. Lee, C.-T. Liang, C.-W. Chu,
    and L.-J. Li, “Wafer-scale mos 2 thin layers prepared by moo 3 sulfurization,”
    Nanoscale, vol. 4, no. 20, pp. 6637–6641, 2012.
    [12] J. O. Sofo, A. S. Chaudhari, and G. D. Barber, “Graphane: a two-dimensional
    hydrocarbon,” Physical Review B, vol. 75, no. 15, p. 153401, 2007.
    [13] R. Fivaz and E. Mooser, “Mobility of charge carriers in semiconducting layer structures,”
    Phys. Rev., vol. 163, no. 3, p. 743, 1967.
    [14] V. Podzorov, M. Gershenson, C. Kloc, R. Zeis, and E. Bucher, “High-mobility
    field-effect transistors based on transition metal dichalcogenides,” Appl. Phys.
    Lett., vol. 84, no. 17, pp. 3301–3303, 2004.
    [15] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer
    mos2 transistors,” Nature nanotechnology, vol. 6, no. 3, pp. 147–150, 2011.
    [16] H. Fang, S. Chuang, T. C. Chang, K. Takei, T. Takahashi, and A. Javey, “Highperformance
    single layered wse2 p-fets with chemically doped contacts,” Nano
    Lett., vol. 12, no. 7, pp. 3788–3792, 2012.
    [17] Y. Yoon, K. Ganapathi, and S. Salahuddin, “How good can monolayer mos2 transistors
    be?,” Nano Lett., vol. 11, no. 9, pp. 3768–3773, 2011.
    [18] X. Li, J. T. Mullen, Z. Jin, K. M. Borysenko, M. B. Nardelli, and K. W. Kim,
    “Intrinsic electrical transport properties of monolayer silicene and mos 2 from first
    principles,” Physical Review B, vol. 87, no. 11, p. 115418, 2013.
    [19] J. Appenzeller, Y.-M. Lin, J. Knoch, and P. Avouris, “Band-to-band tunneling
    in carbon nanotube field-effect transistors,” Phys. Rev. Lett., vol. 93, no. 19,
    p. 196805, 2004.
    [20] Y. Lu, S. Bangsaruntip, X. Wang, L. Zhang, Y. Nishi, and H. Dai, “Dna functionalization
    of carbon nanotubes for ultrathin atomic layer deposition of high 
    dielectrics for nanotube transistors with 60 mv/decade switching,” J. Am. Chem.
    Soc., vol. 128, no. 11, pp. 3518–3519, 2006.
    [21] A. Villalon, C. Le Royer, M. Cassé, D. Cooper, B. Prévitali, C. Tabone, J.-M.
    Hartmann, P. Perreau, P. Rivallin, J.-F. Damlencourt, et al., “Strained tunnel fets
    with record i on: first demonstration of etsoi tfets with sige channel and rsd,” in
    VLSI technology (VLSIT), 2012 Symposium on, pp. 49–50, IEEE, 2012.
    [22] T. Krishnamohan, D. Kim, S. Raghunathan, and K. Saraswat, “Double-gate
    strained-ge heterostructure tunneling fet (tfet) with record high drive currents and�
    60mv/dec subthreshold slope,” in Electron Devices Meeting, 2008. IEDM 2008.
    IEEE International, pp. 1–3, IEEE, 2008.
    [23] S. H. Kim, H. Kam, C. Hu, and T.-J. K. Liu, “Germanium-source tunnel field effect
    transistors with record high i on/i off,” in VLSI Technology, 2009 Symposium on,
    pp. 178–179, IEEE, 2009.
    [24] K. Tomioka, M. Yoshimura, and T. Fukui, “Steep-slope tunnel field-effect transistors
    using iii–v nanowire/si heterojunction,” in VLSI technology (VLSIT), 2012
    symposium on, pp. 47–48, IEEE, 2012.
    [25] G. Dewey, B. Chu-Kung, J. Boardman, J. Fastenau, J. Kavalieros, R. Kotlyar,
    W. Liu, D. Lubyshev, M. Metz, N. Mukherjee, et al., “Fabrication, characterization,
    and physics of iii–v heterojunction tunneling field effect transistors (h-tfet)
    for steep sub-threshold swing,” in Electron Devices Meeting (IEDM), 2011 IEEE
    International, pp. 33–6, IEEE, 2011.
    [26] D. Jena, “Tunneling transistors based on graphene and 2-d crystals,” vol. 101, no. 7,
    pp. 1585–1602, 2013.
    [27] F. Schwierz, “Graphene transistors: status, prospects, and problems,” vol. 101,
    no. 7, pp. 1567–1584, 2013.
    [28] J. Zheng, L. Wang, R. Quhe, Q. Liu, H. Li, D. Yu, W.-N. Mei, J. Shi, Z. Gao, and
    J. Lu, “Sub-10 nm gate length graphene transistors: operating at terahertz frequencies
    with current saturation,” Scientific reports, vol. 3, 2013.
    [29] Z. Guo, R. Dong, P. S. Chakraborty, N. Lourenco, J. Palmer, Y. Hu, M. Ruan,
    J. Hankinson, J. Kunc, J. D. Cressler, et al., “Record maximum oscillation frequency
    in c-face epitaxial graphene transistors,” Nano Lett., vol. 13, no. 3, pp. 942–
    947, 2013.
    [30] R. Lai, X. Mei, W. Deal, W. Yoshida, Y. Kim, P. Liu, J. Lee, J. Uyeda, V. Radisic,
    M. Lange, et al., “Sub 50 nm inp hemt device with fmax greater than 1 thz,” in
    Electron Devices Meeting, 2007. IEDM 2007. IEEE International, pp. 609–611,
    IEEE, 2007.
    [31] G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh,
    S. K. Banerjee, and L. Colombo, “Electronics based on two-dimensional materials,”
    Nature nanotechnology, vol. 9, no. 10, pp. 768–779, 2014.
    [32] Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and
    H. Zhang, “Single-layer mos2 phototransistors,” ACS nano, vol. 6, no. 1, pp. 74–
    80, 2011.
    [33] H. S. Lee, S.-W. Min, Y.-G. Chang, M. K. Park, T. Nam, H. Kim, J. H. Kim, S. Ryu,
    and S. Im, “Mos2 nanosheet phototransistors with thickness-modulated optical energy
    gap,” Nano Lett., vol. 12, no. 7, pp. 3695–3700, 2012.
    [34] A. Carladous, R. Coratger, F. Ajustron, G. Seine, R. Pechou, and J. Beauvillain,
    “Light emission from spectral analysis of au/mos 2 nanocontacts stimulated by
    scanning tunneling microscopy,” Physical Review B, vol. 66, no. 4, p. 045401,
    2002.
    [35] S. Kirmayer, E. Aharon, E. Dovgolevsky, M. Kalina, and G. L. Frey, “Selfassembled
    lamellar mos2, sns2 and sio2 semiconducting polymer nanocomposites,”
    Philosophical Transactions of the Royal Society of London A: Mathematical,
    Physical and Engineering Sciences, vol. 365, no. 1855, pp. 1489–1508, 2007.
    [36] X. Wang, Y. Gong, G. Shi, W. L. Chow, K. Keyshar, G. Ye, R. Vajtai, J. Lou,
    Z. Liu, E. Ringe, et al., “Chemical vapor deposition growth of crystalline monolayer
    mose2,” ACS nano, vol. 8, no. 5, pp. 5125–5131, 2014.
    [37] N. Peimyoo, J. Shang, C. Cong, X. Shen, X. Wu, E. K. Yeow, and T. Yu, “Nonblinking,
    intense two-dimensional light emitter: monolayer ws2 triangles,” ACS
    nano, vol. 7, no. 12, pp. 10985–10994, 2013.
    [38] X. Ling, Y.-H. Lee, Y. Lin, W. Fang, L. Yu, M. S. Dresselhaus, and J. Kong, “Role
    of the seeding promoter in mos2 growth by chemical vapor deposition,” Nano letters,
    vol. 14, no. 2, pp. 464–472, 2014.
    [39] T. H. Ly, M.-H. Chiu, M.-Y. Li, J. Zhao, D. J. Perello, M. O. Cichocka, H. M. Oh,
    S. H. Chae, H. Y. Jeong, F. Yao, et al., “Observing grain boundaries in cvd-grown
    monolayer transition metal dichalcogenides,” ACS nano, vol. 8, no. 11, pp. 11401–
    11408, 2014.
    [40] Y. Liu, C. Tan, H. Chou, A. Nayak, D. Wu, R. Ghosh, H.-Y. Chang, Y. Hao,
    X. Wang, J.-S. Kim, et al., “Thermal oxidation of wse2 nanosheets adhered on
    sio2/si substrates,” Nano Lett., vol. 15, no. 8, pp. 4979–4984, 2015.
    [41] Y. Rong, K. He, M. Pacios, A. W. Robertson, H. Bhaskaran, and J. H. Warner,
    “Controlled preferential oxidation of grain boundaries in monolayer tungsten disulfide
    for direct optical imaging,” ACS nano, vol. 9, no. 4, pp. 3695–3703, 2015.
    [42] B. Chen, H. Sahin, A. Suslu, L. Ding, M. I. Bertoni, F. Peeters, and S. Tongay, “Environmental
    changes in mote2 excitonic dynamics by defects-activated molecular
    interaction,” ACS nano, vol. 9, no. 5, pp. 5326–5332, 2015.
    [43] J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation
    made simple,” Phys. Rev. Lett., vol. 77, no. 18, p. 3865, 1996.
    [44] H. Sahin, S. Tongay, S. Horzum, W. Fan, J. Zhou, J. Li, J. Wu, and F. Peeters,
    “Anomalous raman spectra and thickness-dependent electronic properties of wse
    2,” Physical Review B, vol. 87, no. 16, p. 165409, 2013.
    [45] W. S. Yun, S. Han, S. C. Hong, I. G. Kim, and J. Lee, “Thickness and strain effects
    on electronic structures of transition metal dichalcogenides: 2h-m x 2 semiconductors
    (m= mo, w; x= s, se, te),” Physical Review B, vol. 85, no. 3, p. 033305,
    2012.
    [46] W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P.-H. Tan, and G. Eda, “Evolution
    of electronic structure in atomically thin sheets of ws2 and wse2,” ACS nano,
    vol. 7, no. 1, pp. 791–797, 2012.
    [47] A. Kumar and P. Ahluwalia, “Electronic structure of transition metal dichalcogenides
    monolayers 1h-mx2 (m= mo, w; x= s, se, te) from ab-initio theory: new
    direct band gap semiconductors,” The European Physical Journal B, vol. 85, no. 6,
    pp. 1–7, 2012.
    [48] H. Liu, N. Han, and J. Zhao, “Atomistic insight into the oxidation of monolayer
    transition metal dichalcogenides: from structures to electronic properties,” RSC
    Advances, vol. 5, no. 23, pp. 17572–17581, 2015.
    [49] Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, “Experimental observation of the
    quantum hall effect and berry’s phase in graphene,” Nature, vol. 438, no. 7065,
    pp. 201–204, 2005.
    [50] A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. Saha, U. Waghmare,
    K. Novoselov, H. Krishnamurthy, A. Geim, A. Ferrari, et al., “Monitoring dopants
    by raman scattering in an electrochemically top-gated graphene transistor,” Nature
    nanotechnology, vol. 3, no. 4, pp. 210–215, 2008.
    [51] M. Pimenta, G. Dresselhaus, M. S. Dresselhaus, L. Cancado, A. Jorio, and R. Saito,
    “Studying disorder in graphite-based systems by raman spectroscopy,” Phys.
    Chem. Chem. Phys., vol. 9, no. 11, pp. 1276–1290, 2007.
    [52] N. Ferralis, R. Maboudian, and C. Carraro, “Evidence of structural strain in epitaxial
    graphene layers on 6h-sic (0001),” Phys. Rev. Lett., vol. 101, no. 15, p. 156801,
    2008.
    [53] L. Malard, M. Pimenta, G. Dresselhaus, and M. Dresselhaus, “Raman spectroscopy
    in graphene,” Physics Reports, vol. 473, no. 5, pp. 51–87, 2009.
    [54] A. Ferrari, J. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec,
    D. Jiang, K. Novoselov, S. Roth, et al., “Raman spectrum of graphene and graphene
    layers,” Phys. Rev. Lett., vol. 97, no. 18, p. 187401, 2006.
    [55] W. Zhou, X. Zou, S. Najmaei, Z. Liu, Y. Shi, J. Kong, J. Lou, P. M. Ajayan, B. I.
    Yakobson, and J.-C. Idrobo, “Intrinsic structural defects in monolayer molybdenum
    disulfide,” Nano Lett., vol. 13, no. 6, pp. 2615–2622, 2013.
    [56] A. Krasheninnikov, P. Lehtinen, A. Foster, and R. Nieminen, “Bending the rules:
    contrasting vacancy energetics and migration in graphite and carbon nanotubes,”
    Chem. Phys. Lett., vol. 418, no. 1, pp. 132–136, 2006.
    [57] G.-D. Lee, C. Wang, E. Yoon, N.-M. Hwang, D.-Y. Kim, and K. Ho, “Diffusion,
    coalescence, and reconstruction of vacancy defects in graphene layers,” Phys. Rev.
    Lett., vol. 95, no. 20, p. 205501, 2005.
    [58] X. Zou, Y. Liu, and B. I. Yakobson, “Predicting dislocations and grain boundaries
    in two-dimensional metal-disulfides from the first principles,” Nano Lett., vol. 13,
    no. 1, pp. 253–258, 2012.
    [59] H.-P. Komsa, J. Kotakoski, S. Kurasch, O. Lehtinen, U. Kaiser, and A. V.
    Krasheninnikov, “Two-dimensional transition metal dichalcogenides under electron
    irradiation: defect production and doping,” Phys. Rev. Lett., vol. 109, no. 3,
    p. 035503, 2012.
    [60] Y.-C. Lin, T. Björkman, H.-P. Komsa, P.-Y. Teng, C.-H. Yeh, F.-S. Huang, K.-
    H. Lin, J. Jadczak, Y.-S. Huang, P.-W. Chiu, et al., “Three-fold rotational defects
    in two-dimensional transition metal dichalcogenides,” Nature communications,
    vol. 6, 2015.
    [61] X. Luo, Y. Zhao, J. Zhang, M. Toh, C. Kloc, Q. Xiong, and S. Y. Quek, “Effects of
    lower symmetry and dimensionality on raman spectra in two-dimensional wse 2,”
    Physical Review B, vol. 88, no. 19, p. 195313, 2013.
    [62] W. Zhao, R. Ribeiro, M. Toh, A. Carvalho, C. Kloc, A. Castro Neto, and G. Eda,
    “Origin of indirect optical transitions in few-layer mos2, ws2, and wse2,” Nano
    Lett., vol. 13, no. 11, pp. 5627–5634, 2013.
    [63] Y.-H. Lee, X.-Q. Zhang, W. Zhang, M.-T. Chang, C.-T. Lin, K.-D. Chang, Y.-C. Yu,
    J. T.-W. Wang, C.-S. Chang, L.-J. Li, et al., “Synthesis of large-area mos2 atomic
    layers with chemical vapor deposition,” Advanced Materials, vol. 24, no. 17,
    pp. 2320–2325, 2012.
    [64] K. Kaasbjerg, K. S. Thygesen, and K. W. Jacobsen, “Phonon-limited mobility in
    n-type single-layer mos 2 from first principles,” Physical Review B, vol. 85, no. 11,
    p. 115317, 2012.
    [65] J. Ye, Y. Zhang, R. Akashi, M. Bahramy, R. Arita, and Y. Iwasa, “Superconducting
    dome in a gate-tuned band insulator,” Science, vol. 338, no. 6111, pp. 1193–1196,
    2012.
    [66] H. Schmidt, F. Giustiniano, and G. Eda, “Electronic transport properties of transition
    metal dichalcogenide field-effect devices: surface and interface effects,”
    Chem. Soc. Rev., vol. 44, no. 21, pp. 7715–7736, 2015.
    [67] D. Jena, W. Choi, and K. Kim, “High-mobility and low-power thin-film transistors
    based on multilayer mos2 crystals,” Nature, vol. 3, no. 1011, 2012.
    [68] S.-L. Li, K. Wakabayashi, Y. Xu, S. Nakaharai, K. Komatsu, W.-W. Li, Y.-F.
    Lin, A. Aparecido-Ferreira, and K. Tsukagoshi, “Thickness-dependent interfacial
    coulomb scattering in atomically thin field-effect transistors,” Nano Lett., vol. 13,
    no. 8, pp. 3546–3552, 2013.
    [69] H. Schmidt, S. Wang, L. Chu, M. Toh, R. Kumar, W. Zhao, A. Castro Neto, J. Martin,
    S. Adam, B. Özyilmaz, et al., “Transport properties of monolayer mos2 grown
    by chemical vapor deposition,” Nano Lett., vol. 14, no. 4, pp. 1909–1913, 2014.
    [70] D. J. Late, B. Liu, H. R. Matte, V. P. Dravid, and C. Rao, “Hysteresis in single-layer
    mos2 field effect transistors,” Acs Nano, vol. 6, no. 6, pp. 5635–5641, 2012.
    [71] J. Brivio, D. T. Alexander, and A. Kis, “Ripples and layers in ultrathin mos2 membranes,”
    Nano Lett., vol. 11, no. 12, pp. 5148–5153, 2011.
    [72] Y.-C. Lin, D. O. Dumcenco, Y.-S. Huang, and K. Suenaga, “Atomic mechanism of
    the semiconducting-to-metallic phase transition in single-layered mos2,” Nature
    nanotechnology, vol. 9, no. 5, pp. 391–396, 2014.
    [73] Y. L. Huang, Y. Chen, W. Zhang, S. Y. Quek, C.-H. Chen, L.-J. Li, W.-T. Hsu,
    W.-H. Chang, Y. J. Zheng, W. Chen, et al., “Bandgap tunability at single-layer
    molybdenum disulphide grain boundaries,” Nature communications, vol. 6, 2015.
    [74] A. Azizi, X. Zou, P. Ercius, Z. Zhang, A. L. Elías, N. Perea-López, G. Stone,
    M. Terrones, B. I. Yakobson, and N. Alem, “Dislocation motion and grain boundary
    migration in two-dimensional tungsten disulphide,” Nature communications,
    vol. 5, 2014.
    [75] D. L. Duong, G. H. Han, S. M. Lee, F. Gunes, E. S. Kim, S. T. Kim, H. Kim, Q. H.
    Ta, K. P. So, S. J. Yoon, et al., “Probing graphene grain boundaries with optical
    microscopy,” Nature, vol. 490, no. 7419, pp. 235–239, 2012.
    [76] A. M. van der Zande, P. Y. Huang, D. A. Chenet, T. C. Berkelbach, Y. You, G.-H.
    Lee, T. F. Heinz, D. R. Reichman, D. A. Muller, and J. C. Hone, “Grains and grain
    boundaries in highly crystalline monolayer molybdenum disulphide,” Nat. Mater.,
    vol. 12, no. 6, pp. 554–561, 2013.
    [77] B. Radisavljevic and A. Kis, “Mobility engineering and a metal–insulator transition
    in monolayer mos2,” Nat. Mater., vol. 12, no. 9, pp. 815–820, 2013.
    [78] A. Rai, A. Valsaraj, H. C. Movva, A. Roy, R. Ghosh, S. Sonde, S. Kang, J. Chang,
    T. Trivedi, R. Dey, et al., “Air stable doping and intrinsic mobility enhancement
    in monolayer molybdenum disulfide by amorphous titanium suboxide

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE