簡易檢索 / 詳目顯示

研究生: 賴姿吟
Lai, Zih-Yin
論文名稱: 探討新建立子宮頸神經內分泌腫瘤細胞株之特徵與藥物反應分析
Characterization and Drug Response Analysis of a Newly Established Neuroendocrine Cervical Carcinoma Cell Line
指導教授: 莊永仁
Chuang, Yung-Jen
口試委員: 張幸治
Chang, Shing-Jyh
詹鴻霖
Chan, Hong-Lin
郭靜娟
Kuo, Ching-Chuan
陳冠宇
Chen, Guan-Yu
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 64
中文關鍵詞: 子宮頸神經內分泌腫瘤合併療法基因毒性藥物磷脂醯醇3激酶抑制劑BEZ235
外文關鍵詞: Neuroendocrine cervical carcinoma, Combination therapy, Genotoxic drug, PI3K inhibitor, BEZ235
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 子宮頸神經內分泌腫瘤是子宮頸癌中相當罕見且具有高侵犯性的類型。至今,並沒有相關體外細胞株可供建立細胞研究模式,這也阻礙了臨床上發展治療子宮頸神經內分泌腫瘤的相關研究。本篇研究因此規劃從活體組織樣本分離出原代培養細胞,希望藉此細胞株,研究治療子宮頸神經內分泌腫瘤的合併藥物療法。
    透過檢體細胞分離選殖的方式,子宮頸神經內分泌腫瘤的原代細胞成功的從一位75歲女性患者檢體中被分離出來,此細胞株被命名為HM-1。我們首先探討關於HM-1細胞株的特徵型態:包含生長曲線、生物標記以及人類乳突病毒感染等情形。研究結果顯示,HM-1細胞株高度表現神經內分泌細胞的生物標記synaptophysin。在HM-1細胞株中也發現了感染第16型人類乳突病毒; 此外,將HM-1細胞株異種移植至裸鼠上,證實HM-1細胞株確實可以形成腫瘤。
    我們接著使用磷脂醯醇3激酶抑制劑:BKM120、BEZ235,或者BEZ235搭配兩種現行治療子宮頸神經內分泌腫瘤的化療藥物:etoposide和cisplatin,進行不同藥物排列組合的抗癌功效分析。利用HM-1細胞株檢測細胞存活率、細胞凋亡以及目標蛋白表現等各種數據,希望藉此找出其中最有抑癌效果的藥物組合。一如預期,研究結果顯示,etoposide和cisplatin的藥物組合,可以有效地抑制HM-1細胞株的增生。而當磷脂醯醇3激酶抑制劑BEZ235搭配etoposide和cisplatin,HM-1的生長會被更顯著抑制。另一方面,我們發現HM-1受磷脂醯醇3激酶抑制劑BEZ235處理後,會下調pAKT 及 p4E-BP1的蛋白表現量。綜合來說,這些實驗結果顯示,當磷脂醯醇3激酶抑制劑BEZ235搭配etoposide和cisplatin作為處理HM-1細胞株的藥物組合時,不僅能有效抑制HM-1細胞增生更能增加HM-1細胞凋亡。
    這個新建立的子宮頸神經內分泌腫瘤細胞株HM-1,不僅是實用的細胞研究工具,使用HM-1找出的協同藥物合併療法:磷脂醯醇3激酶抑制劑搭配現行使用的基因毒性藥物,也許能成為子宮頸神經內分泌腫瘤臨床治療上的新治療方針。


    Neuroendocrine cervical carcinoma (NECC) is a rare and aggressive subtype of cervical cancer. To date, no NECC cell-based model is available, which hinders the development of new therapeutic strategies for NECC. In this study, we derived a new NECC cell line from an ex vivo biopsy and used it to explore novel drug combination approach for NECC therapy.
    A NECC tissue sample from a 75-year-old female patient was processed to derive a primary cell line annotated as HM-1. The features of HM-1 in growth kinetics, biomarker profiles, and HPV exposure were analyzed to establish its characteristic profile. Next, HM-1 was treated with phosphatidylinositol-3 kinase (PI3K) inhibitors, BKM120 or BEZ235, or BEZ235 in combination with the two known genotoxic drugs, etoposide and/or cisplatin, that have been used in current NECC therapy, to evaluate which drug combination could serve as a more effective treatment approach. The inhibiting effects on HM-1 were evaluated by cell viability, apoptosis, and target kinase expression.
    The stable NECC cell line HM-1 displayed high expression levels of the neuroendocrine marker, synaptophysin. Human papillomavirus-16 was also found in HM-1 and HM-1 cell transplantation could induce tumor growth in nude mice. As expected, the combination of etoposide and cisplatin could synergistically inhibit HM-1 cell proliferation. Strikingly, when etoposide and cisplatin were combined with PI3K inhibitor BEZ235, the growth of HM-1 cells was significantly reduced. Kinase profiling revealed the expression levels of pAKT and p4E-BP1 were affected by BEZ235 treatment. Taken together, the data implied the combination of genotoxic drugs (etoposide and cisplatin) with BEZ235 not only inhibited HM-1 cell proliferation but also increased cell apoptosis.
    The newly established NECC cell line HM-1 could serve as a cell-based model for NECC research. The synergistic drug combination of PI3K inhibitor with genotoxic drugs might become a new treatment strategy against NECC.

    中文摘要 I Abstract III Abbreviations V Table of contents VII 1. Introduction 1 1.1 Cervical cancer 2 1.2 Neuroendocrine cervical carcinoma (NECC) and its treatment strategies 3 1.3 Genotoxic agents for neuroendocrine cervical carcinoma (NECC) 4 1.4 Target therapy and phosphatidylinositol-3 kinase (PI3K) signaling pathway 5 1.5 Synergistic anti-cancer activity of drug combinations 7 1.6 Objectives and significant finding of this study 7 2. Materials and methods 9 2.1 Ethics approval and consent to participate 10 2.2 Cancer cell isolation and cell culture 10 2.3 SH-SY5Y and H9C2 cell culture 11 2.4 Doubling time assay 12 2.5 Short tandem repeat (STR) analysis 12 2.6 HPV detection 12 2.7 Western blot analysis 13 2.8 Immunocytochemistry (ICC) 13 2.9 Xenotransplantation 14 2.10 Genotoxic agents and PI3K inhibitors 14 2.11 Cell proliferation assay 15 2.12 Cell viability assay 15 2.13 DNA fragmentation ELISA 15 2.14 Cell Caspase-3 apoptosis 16 2.15 Statistics 17 3. Results 18 3.1 Establishment of a new neuroendocrine cervical carcinoma cell line in vitro 19 3.2 HM-1 is a novel neuroendocrine cervical carcinoma cell line 19 3.3 General characteristics of HM-1 cells derive from human NECC: morphology, growth rate and HPV infection 20 3.4 HM-1 cells express the neuroendocrine marker synaptophysin (SYP) 21 3.5 In vivo xenotransplantation of HM-1 22 3.6 Combination of etoposide and cisplatin effectively inhibits the growth of NECC 22 3.7 PI3K inhibition decreases HM-1 cell proliferation 24 3.8 PI3K inhibition results in an increase in HM-1 apoptosis and DNA damage 25 3.9 The triple-drug combination of etoposide, cisplatin and BEZ235 is the most effective in suppressing HM-1 viability and increasing HM-1 apoptosis in vitro 25 4. Discussion 27 4.1 HM-1 is a cell-based NECC research model 28 4.2 HPV infection might correlate to the tumorigenesis of NECC 28 4.3 Epithelial-to-mesenchymal transition (EMT) might play a critical role in high metastatic rate of NECC 29 4.4 PI3K/Akt/mTOR signaling pathway might be involved in driving NECC progression 31 4.5 BEZ235 is a potential drug for treating NECC 32 4.6 Other potential drugs for treating NECC 33 4.7 More clinical samples are required for studying NECC 34 4.8 Perspective of this study 35 5. References 36 6. Tables 45 Table 1. Antibodies list 46 Table 2. Allele table for the HM-1 cells 47 Table 3. Comparison the STR profile between HM-1 cells and other neuroendocrine tumor cell lines 48 Table 4. Comparison the STR profile between HM-1 cells and ATCC database 49 7. Figures 50 Figure 1. Characterization of HM-1 cells. 51 Figure 2. HM-1 cells expressed the neuroendocrine marker neuroendocrine synaptophysin (SYP). 52 Figure 3. In vivo xenotransplantation of HM-1. 54 Figure 4. Dose response curves of HM-1 cells to etoposide and cisplatin treatment. 55 Figure 5. PI3K inhibitors decreased cell proliferation rate and cell viability of HM-1 cells. 57 Figure 6. PI3K inhibitors enhanced cell apoptosis of HM-1 cells. 59 Figure 7. Triple-drug combination of etoposide, cisplatin and BEZ235 resulted in more effective cell inhibition and DNA damage in HM-1. 61 Figure 8. Schematic model for a novel therapeutic strategy for treating NECC. 62 8. Appendix figure 63 Figure A1. HM-1 cells expressed the EMT mesenchymal marker, vimentin. 64

    1. Stewart BW, Wild C, International Agency for Research on Cancer, World Health
    Organization. World cancer report 2014.
    2. Intaraphet S, Kasatpibal N, Sogaard M, Khunamornpong S, Patumanond J, Chandacham A, Chitapanarux I, Siriaunkgul S. Histological type-specific prognostic factors of cervical small cell neuroendocrine carcinoma, adenocarcinoma, and squamous cell carcinoma. Onco Targets Ther. 2014; 7: 1205-1214.
    3. Margolis B, Tergas AI, Chen L, Hou JY, Burke WM, Hu JC, Ananth CV, Neugut
    AI, Hershman DL, Wright JD. Natural history and outcome of neuroendocrine carcinoma of the cervix. Gynecol Oncol. 2016; 141: 247-254.
    4. Walboomers JMM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, Shah KV, Snijders PJF, Peto J, Meijer CJLM, Munoz N. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. Journal of Pathology. 1999; 189: 12-19.
    5. Manchana T, Ittiwut C, Mutirangura A, Kavanagh JJ. Targeted therapies for rare
    gynaecological cancers. Lancet Oncol. 2010; 11: 685-693.
    6. Munger K, Howley PM. Human papillomavirus immortalization and transformation functions. Virus Res. 2002; 89: 213-228.
    7. Organization WH. (2014). Comprehensive cervical cancer control: A guide to essential practice. (Geneva: World Health Organization).
    8. Saga Y, Suzuki M, Tamura N, Ohwada M, Sato I. Establishment and characterization of a new cell line (SKS) from neuroendocrine small cell carcinoma of the uterine cervix and its chemosensitivity. Oncology. 2001; 60: 367-372.
    9. McCann GA, Boutsicaris CE, Preston MM, Backes FJ, Eisenhauer EL, Fowler JM,
    Cohn DE, Copeland LJ, Salani R, O'Malley DM. Neuroendocrine carcinoma of the uterine cervix: the role of multimodality therapy in early-stage disease. Gynecol Oncol. 2013; 129: 135-139.
    10. Li WW, Yau TN, Leung CW, Pong WM, Chan MY. Large-cell neuroendocrine carcinoma of the uterine cervix complicating pregnancy. Hong Kong Med J. 2009; 15: 69-72.
    11. Chen J, Macdonald OK, Gaffney DK. Incidence, mortality, and prognostic factors
    of small cell carcinoma of the cervix. Obstet Gynecol. 2008; 111: 1394-1402.
    12. Viswanathan AN, Deavers MT, Jhingran A, Ramirez PT, Levenback C, Eifel PJ. Small cell neuroendocrine carcinoma of the cervix: outcome and patterns of recurrence. Gynecol Oncol. 2004; 93: 27-33.
    13. Gadducci A, Carinelli S, Aletti G. Neuroendrocrine tumors of the uterine cervix: A therapeutic challenge for gynecologic oncologists. Gynecol Oncol. 2017; 144: 637-646.
    14. Yoshida Y, Sato K, Katayama K, Yamaguchi A, Imamura Y, Kotsuji F. Atypical metastatic carcinoid of the uterine cervix and review of the literature. J Obstet Gynaecol Res. 2011; 37: 636-640.
    15. Wang KL, Chang TC, Jung SM, Chen CH, Cheng YM, Wu HH, Liou WS, Hsu ST,
    Ou YC, Yeh LS, Lai HC, Huang CY, Chen TC, et al. Primary treatment and prognostic factors of small cell neuroendocrine carcinoma of the uterine cervix: a Taiwanese Gynecologic Oncology Group study. Eur J Cancer. 2012; 48: 1484-1494.
    16. Gardner GJ, Reidy-Lagunes D, Gehrig PA. Neuroendocrine tumors of the gynecologic tract: A Society of Gynecologic Oncology (SGO) clinical document. Gynecol Oncol. 2011; 122: 190-198.
    17. Nasu K, Hirakawa T, Okamoto M, Nishida M, Kiyoshima C, Matsumoto H, Takai
    N, Narahara H. Advanced small cell carcinoma of the uterine cervix treated by neoadjuvant chemotherapy with irinotecan and cisplatin followed by radical surgery. Rare Tumors. 2011; 3: e6.
    18. Dongol S, Tai Y, Shao Y, Jiang J, Kong B. A retrospective clinicopathological analysis of small-cell carcinoma of the uterine cervix. Mol Clin Oncol. 2014; 2: 71-75.
    19. Boruta DM, 2nd, Schorge JO, Duska LA, Crum CP, Castrillon DH, Sheets EE. Multimodality therapy in early-stage neuroendocrine carcinoma of the uterine cervix. Gynecol Oncol. 2001; 81: 82-87.
    20. Jiang L, Yang KH, Guan QL, Mi DH, Wang J. Cisplatin plus etoposide versus other platin-based regimens for patients with extensive small-cell lung cancer: a systematic review and meta-analysis of randomised, controlled trials. Intern Med J. 2012; 42: 1297-1309.
    21. Pommier Y, Leo E, Zhang H, Marchand C. DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem Biol. 2010; 17: 421-433.
    22. Hande KR. Etoposide: four decades of development of a topoisomerase II inhibitor.
    Eur J Cancer. 1998; 34: 1514-1521.
    23. Gordaliza M, Garcia PA, del Corral JM, Castro MA, Gomez-Zurita MA. Podophyllotoxin: distribution, sources, applications and new cytotoxic derivatives. Toxicon. 2004; 44: 441-459.
    24. Calvani M, Bianchini F, Taddei ML, Becatti M, Giannoni E, Chiarugi P, Calorini L. Etoposide-Bevacizumab a new strategy against human melanoma cells expressing stem-like traits. Oncotarget. 2016; 7: 51138-51149.
    25. Siddik ZH. Cisplatin: mode of cytotoxic action and molecular basis of resistance.
    Oncogene. 2003; 22: 7265-7279.
    26. Dasari S, Tchounwou PB. Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol. 2014; 740: 364-378.
    27. Dietel M, Johrens K, Laffert MV, Hummel M, Blaker H, Pfitzner BM, Lehmann A, Denkert C, Darb-Esfahani S, Lenze D, Heppner FL, Koch A, Sers C, et al. A 2015 update on predictive molecular pathology and its role in targeted cancer therapy: a review focussing on clinical relevance. Cancer Gene Ther. 2015; 22: 417-430.
    28. Stratikopoulos EE, Parsons RE. Molecular Pathways: Targeting the PI3K Pathway
    in Cancer-BET Inhibitors to the Rescue. Clin Cancer Res. 2016; 22: 2605-2610.
    29. Chang F, Lee JT, Navolanic PM, Steelman LS, Shelton JG, Blalock WL, Franklin
    RA, McCubrey JA. Involvement of PI3K/Akt pathway in cell cycle progression,
    apoptosis, and neoplastic transformation: a target for cancer chemotherapy. Leukemia. 2003; 17: 590-603.
    30. Niessner H, Schmitz J, Tabatabai G, Schmid AM, Calaminus C, Sinnberg T, Weide
    B, Eigentler TK, Garbe C, Schittek B, Quintanilla-Fend L, Bender B, Mai M, et al. PI3K Pathway Inhibition Achieves Potent Antitumor Activity in Melanoma Brain Metastases In Vitro and In Vivo. Clin Cancer Res. 2016.
    31. Franke TF, Hornik CP, Segev L, Shostak GA, Sugimoto C. PI3K/Akt and apoptosis: size matters. Oncogene. 2003; 22: 8983-8998.
    32. Dudek H, Datta SR, Franke TF, Birnbaum MJ, Yao R, Cooper GM, Segal RA, Kaplan DR, Greenberg ME. Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science. 1997; 275: 661-665.
    33. Wolin EM. PI3K/Akt/mTOR pathway inhibitors in the therapy of pancreatic neuroendocrine tumors. Cancer Lett. 2013; 335: 1-8.
    34. Capdevila J, Meeker A, Garcia-Carbonero R, Pietras K, Astudillo A, Casanovas O,
    Scarpa A. Molecular biology of neuroendocrine tumors: from pathways to biomarkers and targets. Cancer Metastasis Rev. 2014; 33: 345-351.
    35. Frumovitz M, Burzawa JK, Byers LA, Lyons YA, Ramalingam P, Coleman RC, Brown J. Sequencing of mutational hotspots in cancer-related genes in small cell neuroendocrine cervical cancer. Gynecol Oncol. 2016; 141: 588-591.
    36. Engelman JA, Luo J, Cantley LC. The evolution of phosphatidylinositol 3-kinases
    as regulators of growth and metabolism. Nat Rev Genet. 2006; 7: 606-619.
    37. Yuan TL, Cantley LC. PI3K pathway alterations in cancer: variations on a theme.
    Oncogene. 2008; 27: 5497-5510.
    38. Valentino JD, Li J, Zaytseva YY, Mustain WC, Elliott VA, Kim JT, Harris JW, Campbell K, Weiss H, Wang C, Song J, Anthony L, Townsend CM, Jr., et al. Cotargeting the PI3K and RAS pathways for the treatment of neuroendocrine tumors. Clin Cancer Res. 2014; 20: 1212-1222.
    39. Vassilopoulos A, Xiao C, Chisholm C, Chen W, Xu X, Lahusen TJ, Bewley C, Deng CX. Synergistic therapeutic effect of cisplatin and phosphatidylinositol 3-kinase (PI3K) inhibitors in cancer growth and metastasis of Brca1 mutant tumors. J Biol Chem. 2014; 289: 24202-24214.
    40. Gottesman MM. Mechanisms of cancer drug resistance. Annu Rev Med. 2002; 53:
    615-627.
    41. Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG. Cancer drug resistance: an evolving paradigm. Nat Rev Cancer. 2013; 13: 714-726.
    42. Li F, Zhao C, Wang L. Molecular-targeted agents combination therapy for cancer:
    developments and potentials. Int J Cancer. 2014; 134: 1257-1269.
    43. Housman G, Byler S, Heerboth S, Lapinska K, Longacre M, Snyder N, Sarkar S. Drug resistance in cancer: an overview. Cancers (Basel). 2014; 6: 1769-1792.
    44. Yeh PJ, Hegreness MJ, Aiden AP, Kishony R. Drug interactions and the evolution
    of antibiotic resistance. Nat Rev Microbiol. 2009; 7: 460-466.
    45. American Type Culture Collection Standards Development Organization Workgroup ASN. Cell line misidentification: the beginning of the end. Nat Rev Cancer. 2010; 10: 441-448.
    46. Berretta M, Cappellani A, Di Vita M, Berretta S, Nasti G, Bearz A, Tirelli U, Canzonieri V. Biomarkers in neuroendocrine tumors. Front Biosci (Schol Ed). 2010; 2: 332-342.
    47. Doorbar J, Egawa N, Griffin H, Kranjec C, Murakami I. Human papillomavirus molecular biology and disease association. Rev Med Virol. 2015; 25 Suppl 1: 2-23.
    48. Wang CH, Garvilles RG, Chen CY. Characterization of human papillomavirus infection in north Taiwan. J Med Virol. 2010; 82: 1416-1423.
    49. Snijders PJ, Steenbergen RD, Heideman DA, Meijer CJ. HPV-mediated cervical carcinogenesis: concepts and clinical implications. J Pathol. 2006; 208: 152-164.
    50. Siriaunkgul S, Utaipat U, Settakorn J, Sukpan K, Srisomboon J, Khunamornpong
    S. HPV genotyping in neuroendocrine carcinoma of the uterine cervix in northern
    Thailand. Int J Gynaecol Obstet. 2011; 115: 175-179.
    51. Wang HL, Lu DW. Detection of human papillomavirus DNA and expression of p16, Rb, and p53 proteins in small cell carcinomas of the uterine cervix. Am J Surg Pathol. 2004; 28: 901-908.
    52. Kuji S, Watanabe R, Sato Y, Iwata T, Hirashima Y, Takekuma M, Ito I, Abe M, Nagashio R, Omae K, Aoki D, Kameya T. A new marker, insulinoma-associated protein 1 (INSM1), for high-grade neuroendocrine carcinoma of the uterine cervix: Analysis of 37 cases. Gynecol Oncol. 2017; 144: 384-390.
    53. Santamaria PG, Moreno-Bueno G, Portillo F, Cano A. EMT: Present and future in
    clinical oncology. Mol Oncol. 2017.
    54. Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest. 2009; 119: 1420-1428.
    55. Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2014; 15: 178-196.
    56. Moody SE, Perez D, Pan TC, Sarkisian CJ, Portocarrero CP, Sterner CJ, Notorfrancesco KL, Cardiff RD, Chodosh LA. The transcriptional repressor Snail promotes mammary tumor recurrence. Cancer Cell. 2005; 8: 197-209.
    57. Cavallaro U, Christofori G. Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nat Rev Cancer. 2004; 4: 118-132.
    58. Willipinski-Stapelfeldt B, Riethdorf S, Assmann V, Woelfle U, Rau T, Sauter G, Heukeshoven J, Pantel K. Changes in cytoskeletal protein composition indicative of an epithelial-mesenchymal transition in human micrometastatic and primary breast carcinoma cells. Clin Cancer Res. 2005; 11: 8006-8014.
    59. Zeisberg M, Neilson EG. Biomarkers for epithelial-mesenchymal transitions. J Clin Invest. 2009; 119: 1429-1437.
    60. Liu CY, Lin HH, Tang MJ, Wang YK. Vimentin contributes to epithelial-mesenchymal transition cancer cell mechanics by mediating cytoskeletal organization and focal adhesion maturation. Oncotarget. 2015; 6: 15966-15983.
    61. McCluggage WG, Sumathi VP, McBride HA, Patterson A. A panel of immunohistochemical stains, including carcinoembryonic antigen, vimentin, and estrogen receptor, aids the distinction between primary endometrial and endocervical adenocarcinomas. Int J Gynecol Pathol. 2002; 21: 11-15.
    62. Cohen JG, Kapp DS, Shin JY, Urban R, Sherman AE, Chen LM, Osann K, Chan JK. Small cell carcinoma of the cervix: treatment and survival outcomes of 188 patients. Am J Obstet Gynecol. 2010; 203.
    63. Yoseph B, Chi M, Truskinovsky AM, Dudek AZ. Large-cell neuroendocrine carcinoma of the cervix. Rare Tumors. 2012; 4: e18.
    64. Maira SM, Pecchi S, Huang A, Burger M, Knapp M, Sterker D, Schnell C, Guthy
    D, Nagel T, Wiesmann M, Brachmann S, Fritsch C, Dorsch M, et al. Identification and characterization of NVP-BKM120, an orally available pan-class I PI3-kinase inhibitor. Mol Cancer Ther. 2012; 11: 317-328.
    65. Koul D, Fu J, Shen RJ, LaFortune TA, Wang SZ, Tiao NY, Kim YW, Liu JL, Ramnarian D, Yuan Y, Garcia-Echevrria C, Maira SM, Yung WKA. Antitumor Activity of NVP-BKM120-A Selective Pan Class I PI3 Kinase Inhibitor Showed Differential Forms of Cell Death Based on p53 Status of Glioma Cells. Clin Cancer Res. 2012; 18: 184-195.
    66. Brachmann SM, Kleylein-Sohn J, Gaulis S, Kauffmann A, Blommers MJ, Kazic-
    Legueux M, Laborde L, Hattenberger M, Stauffer F, Vaxelaire J, Romanet V, Henry C, Murakami M, et al. Characterization of the mechanism of action of the pan class I PI3K inhibitor NVP-BKM120 across a broad range of concentrations. Mol Cancer Ther. 2012; 11: 1747-1757.
    67. Rodon J, Dienstmann R, Serra V, Tabernero J. Development of PI3K inhibitors: lessons learned from early clinical trials. Nat Rev Clin Oncol. 2013; 10: 143-153.
    68. Serra V, Markman B, Scaltriti M, Eichhorn PJ, Valero V, Guzman M, Botero ML,
    Llonch E, Atzori F, Di Cosimo S, Maira M, Garcia-Echeverria C, Parra JL, et al.
    NVP-BEZ235, a dual PI3K/mTOR inhibitor, prevents PI3K signaling and inhibits
    the growth of cancer cells with activating PI3K mutations. Cancer Res. 2008; 68:
    8022-8030.
    69. Chapuis N, Tamburini J, Green AS, Vignon C, Bardet V, Neyret A, Pannetier M, Willems L, Park S, Macone A, Maira SM, Ifrah N, Dreyfus F, et al. Dual Inhibition of PI3K and mTORC1/2 Signaling by NVP-BEZ235 as a New Therapeutic Strategy for Acute Myeloid Leukemia. Clin Cancer Res. 2010; 16: 5424-5435.
    70. Passacantilli I, Capurso G, Archibugi L, Calabretta S, Caldarola S, Loreni F, Delle
    Fave G, Sette C. Combined therapy with RAD001 e BEZ235 overcomes resistance
    of PET immortalized cell lines to mTOR inhibition. Oncotarget. 2014; 5: 5381-5391.
    71. Chen X, Zhao M, Hao M, Sun X, Wang J, Mao Y, Zu L, Liu J, Shen Y, Wang J, Shen K. Dual inhibition of PI3K and mTOR mitigates compensatory AKT activation and improves tamoxifen response in breast cancer. Mol Cancer Res. 2013; 11: 1269-1278.
    72. Civallero M, Cosenza M, Pozzi S, Bari A, Ferri P, Sacchi S. Activity of BKM120
    and BEZ235 against Lymphoma Cells. Biomed Res Int. 2015; 2015: 870918.
    73. Babichev Y, Kabaroff L, Datti A, Uehling D, Isaac M, Al-awar R, Prakesch M, Sun RX, Boutros PC, Venier R, Dickson BC, Gladdy RA. PI3K/AKT/mTOR inhibition in combination with doxorubicin is an effective therapy for leiomyosarcoma. J Transl Med. 2016; 14.
    74. Pocza T, Sebestyen A, Turanyi E, Krenacs T, Mark A, Sticz TB, Jakab Z, Hauser P. mTOR Pathway As a Potential Target In a Subset of Human Medulloblastoma. Pathol Oncol Res. 2014; 20: 893-900.
    75. Xie S, Song L, Yang F, Tang C, Yang S, He J, Pan X. Enhanced efficacy of adjuvant
    chemotherapy and radiotherapy in selected cases of surgically resected neuroendocrine carcinoma of the uterine cervix: A retrospective cohort study. Medicine (Baltimore). 2017; 96: e6361.
    76. Basch E, Iasonos A, McDonough T, Barz A, Culkin A, Kris MG, Scher HI, Schrag
    D. Patient versus clinician symptom reporting using the National Cancer Institute
    Common Terminology Criteria for Adverse Events: results of a questionnaire-based study. Lancet Oncology. 2006; 7: 903-909.
    77. Tangjitgamol S, Ramirez PT, Sun CC, See HT, Jhingran A, Kavanagh JJ, Deavers
    MT. Expression of HER-2/neu, epidermal growth factor receptor, vascular endothelial growth factor, cyclooxygenase-2, estrogen receptor, and progesterone receptor in small cell and large cell neuroendocrine carcinoma of the uterine cervix: a clinicopathologic and prognostic study. Int J Gynecol Cancer. 2005; 15: 646-656.
    78. Yao JC, Phan AT, Chang DZ, Wolff RA, Hess K, Gupta S, Jacobs C, Mares JE, Landgraf AN, Rashid A, Meric-Bernstam F. Efficacy of RAD001 (everolimus) and octreotide LAR in advanced low- to intermediate-grade neuroendocrine tumors: results of a phase II study. J Clin Oncol. 2008; 26: 4311-4318.
    79. Yao JC, Lombard-Bohas C, Baudin E, Kvols LK, Rougier P, Ruszniewski P, Hoosen S, St Peter J, Haas T, Lebwohl D, Van Cutsem E, Kulke MH, Hobday TJ, et al. Daily oral everolimus activity in patients with metastatic pancreatic neuroendocrine tumors after failure of cytotoxic chemotherapy: a phase II trial. J Clin Oncol. 2010; 28: 69-76.
    80. Administration USFaD. (2011, 2016). Everolimus (Afinitor). U.S. Food and Drug Administration).
    81. Grozinsky-Glasberg S, Shimon I, Rubinfeld H. The role of cell lines in the study
    of neuroendocrine tumors. Neuroendocrinology. 2012; 96: 173-187.
    82. Larsson DE, Hassan S, Larsson R, Oberg K, Granberg D. Combination analyses of anti-cancer drugs on human neuroendocrine tumor cell lines. Cancer Chemother Pharmacol. 2009; 65: 5-12.
    83. Zitzmann K, Ruden J, Brand S, Goke B, Lichtl J, Spottl G, Auernhammer CJ. Compensatory activation of Akt in response to mTOR and Raf inhibitors - a rationale for dual-targeted therapy approaches in neuroendocrine tumor disease. Cancer Lett. 2010; 295: 100-109.

    QR CODE