研究生: |
賴昱銓 Lai, Yu Chuan |
---|---|
論文名稱: |
聚丙烯腈纖維和所對應之碳纖維結構與性質研究 Structure and Properties of Poly(acrylonitrile) Fiber and Its Corresponding Carbon Fiber |
指導教授: |
陳信龍
Chen, Hsin Lung |
口試委員: |
蘇安仲
Su, An Chung 邱佑宗 Chiu, Yu Tsung |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 英文 |
論文頁數: | 94 |
中文關鍵詞: | 碳纖維 、凝固浴 、聚丙烯腈 、拉伸比 |
外文關鍵詞: | carbon fiber, coagulation bath, PAN, draw ratio |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
聚丙烯腈(PAN)是一種在工業上常見可用來製造碳纖維的前驅物,本研究主要是針對前驅物紡絲條件以及熱處理溫度(HTT)對於PAN前驅物纖維的結構、熱性質還有物性的影響以及與後續碳纖維的相關性。此外透過廣角X光散射(WAXS)、示差掃描量熱儀(DSC)、熱重分析儀(TGA)、傅立葉紅外線光譜儀(FTIR)、掃描式電子顯微鏡(SEM)、元素分析(EA)以及拉伸測試來進一步分析碳纖維的結晶方向性以及前驅物纖維性質的相關性以了解彼此間是否存在繼承特性。PAN紡絲纖維是透過工研院的工業生產線以濕式紡絲的方式製造,二維WAXS圖譜以及拉伸測試實驗結果顯示提高紡絲條件的拉伸比以及凝固浴(DMSO)濃度可以得到強度較佳的前驅物纖維,這是因為纖維有較佳的結晶方向性,然而強度較佳的前驅物纖維卻沒有把好的性質傳遞下去,前驅物纖維的機械性質與結晶方向性是呈現正向關係,但是最後的碳纖維卻沒有吻合,拉曼光譜分析和熱孔隙測量分析(TPM)發現碳纖維的強度與裡面所含的結晶缺陷以及孔洞呈現反比關係,這些結晶缺陷以及孔洞是從前驅物紡絲條件以及穩定化過程所傳承下來,除此之外,氧化纖維中的氧含量也是一個得到較佳碳纖維的重要指標,較佳的前驅物紡絲條件會使前驅物纖維內所含的孔洞較少,導致穩定化時氧氣擴散的速率較低,氧化情形不佳使得碳纖維的強度下降,適當的組合紡絲條件以及HTT才可以得到最佳化機械性質的碳纖維。
Polyacrylonitrile (PAN) is a common precursor for manufacturing carbon fiber in industrial production. In this study, the effects of initial spinning condition and heat treatment temperature (HTT) on the structures and mechanical properties of PAN precursor fiber and the corresponding carbon fiber were investigated. Moreover, the hereditary effect of precursor fiber, oxidized fiber and the subsequent carbon fiber was evaluated by WAXS, DSC, TGA, FTIR, SEM, EA and tensile test. The PAN precursor fiber was successfully produced through wet spinning method by an industrial spinning line at Industrial Technology Research Institute (ITRI) of Taiwan. From the 2D WAXS patterns and tensile test, it was found that the higher draw ratio and DMSO content in the initial spinning condition produce stronger precursor fiber due to the enhancement in crystal orientation. However, the mechanical properties possessed by the precursor fiber with better initial spinning condition cannot be translated into the resulting carbon fiber. Through Raman spectroscopy and thermoporometry, it was found that the strength of the carbon fiber decreased with increasing voids and defects within its crystalline regions, which were inherited from the imperfections formed during the initial spinning and stabilization process. In addition, the appropriate oxygen content in oxidized fiber is also an important factor to create strong carbon fiber. Therefore, carbon fiber with better mechanical properties can be produced by the appropriate combination of the initial spinning condition with subsequent heat treatment and carbonization condition.
Reference
1. Shindo, A. Osaka.(317) 1961.
2. Morgan, P., Carbon fibers and their composites. CRC PressI Llc: 2005; Vol. 27.
3. Sandler, S. R., POLYMER SYNTHESIS. VOL. 1. 1974.
4. Ashina, Y., TEMPERATURE CONTROL IN SUSPENSION POLYMERISATION. Google Patents: 1972.
5. Bacon, R. Trans. Faraday Soc. 1946, 42, 140-155.
6. Frank, E.; Steudle, L. M.; Ingildeev, D.; Spörl, J. M.; Buchmeiser, M. R. Angewandte Chemie International Edition 2014, 53, (21), 5262-5298.
7. Rahaman, M. S. A.; Ismail, A. F.; Mustafa, A. Polymer Degradation and Stability 2007, 92, (8), 1421-1432.
8. Tsai, J.-S.; Lin, C.-H. Journal of Applied Polymer Science 1991, 43, (4), 679-685.
9. Dalton, S.; Heatley, F.; Budd, P. M. Polymer 1999, 40, (20), 5531-5543.
10. Fitzer, E.; Müller, D. J. Carbon 1975, 13, (1), 63-69.
11. Bansal, R. C.; Donnet, J.-B.; Stoeckli, F., Active carbon. M. Dekker: 1988.
12. Houtz, R. Textile Research Journal 1950, 20, (11), 786-801.
13. Schurz, J. Journal of Polymer Science 1958, 28, (117), 438-439.
14. Standage, A. E.; Matkowsky, R. D. European Polymer Journal 1971, 7, (7), 775-783.
15. Konkin, A. Elsevier Science Publishers B. V., Handbook of Composites. 1985, 1, 241-273.
16. Friedlander, H. N.; Peebles, L. H.; Brandrup, J.; Kirby, J. R. Macromolecules 1968, 1, (1), 79-86.
17. Clarke, A.; Bailey, J. 1973.
18. Bailey, J.; Clarke, A. Chemistry in Britain 1970, 6, (11), 484-&.
19. Goodhew, P.; Clarke, A.; Bailey, J. Materials Science and Engineering 1975, 17, (1), 3-30.
20. Ko, T. H. Journal of applied polymer science 1991, 43, (3), 589-600.
21. Fitzer, E.; Frohs, W.; Heine, M. Carbon 1986, 24, (4), 387-395.
22. Alexandru, L.; Guillet, J. E. Journal of Polymer Science: Polymer Chemistry Edition 1975, 13, (2), 483-494.
23. Rašković, V.; Marinković, S. Carbon 1978, 16, (5), 351-357.
24. Morita, K.; Murata, Y.; Ishitani, A.; Murayama, K.; Ono, T.; Nakajima, A. Pure and Applied Chemistry 1986, 58, (3), 455-468.
25. Huang, X. Materials 2009, 2, (4), 2369-2403.
26. Zhu, D.; Xu, C.; Nakura, N.; Matsuo, M. Carbon 2002, 40, (3), 363-373.
27. Gupta, A.; Paliwal, D.; Bajaj, P. Journal of Macromolecular Science, Part C: Polymer Reviews 1991, 31, (1), 1-89.
28. Wangxi, Z.; Jie, L.; Gang, W. Carbon 2003, 41, (14), 2805-2812.
29. Dresselhaus, M. S.; Dresselhaus, G.; Sugihara, K.; Spain, I. L.; Goldberg, H. A., Graphite fibers and filaments. Springer-Verlag Berlin: 1988; Vol. 5.
30. Jenkins, G. M.; Kawamura, K., Polymeric carbons--carbon fibre, glass and char. Cambridge University Press: 1976.
31. Jain, M. K.; Abhiraman, A. Journal of materials science 1987, 22, (1), 278-300.
32. Yu, M.; Xu, Y.; Wang, C.; Hu, X.; Zhu, B.; Qiao, K.; Yuan, H. Journal of Applied Polymer Science 2012, 125, (4), 3159-3166.
33. Hoffman, W.; Hurley, W.; Liu, P.; Owens, T. Journal of Materials Research 1991, 6, (08), 1685-1694.
34. Fitzer, E. Carbon 1989, 27, (5), 621-645.
35. Bennett, S. C. Strength-structure relationships in carbon fibers. University of Leeds, 1976.
36. Matsumoto, T. Pure and applied chemistry 1985, 57, (11), 1553-1562.
37. Takaku, A.; Shioya, M. Journal of Materials Science 1990, 25, (11), 4873-4879.
38. Bennett, S. C.; Johnson, D. J. Carbon 1979, 17, (1), 25-39.
39. Lee, S.; Kim, J.; Ku, B.-C.; Kim, J.; Joh, H.-I. Advances in Chemical Engineering and Science 2012, 2, 275.
40. Chen, J.; Harrison, I. Carbon 2002, 40, (1), 25-45.
41. Devasia, R.; Nair, C.; Sadhana, R.; Babu, N.; Ninan, K. Journal of applied polymer science 2006, 100, (4), 3055-3062.
42. Wang, T.-Y.; Chang, H.-C.; Chiu, Y.-T.; Tsai, J.-L. Journal of Applied Polymer Science 2015, 132, (2), n/a-n/a.
43. Yu, M.-J.; Bai, Y.-J.; Wang, C.-G.; Xu, Y.; Guo, P.-Z. Materials Letters 2007, 61, (11–12), 2292-2294.
44. Uchida, T. In 1. Shinoyama, Y. Ito, and K. Nukuda, Proceedings of Ihe 10th Biennial Conference on Carbon, 1971; 1971; p 31.
45. Chen, J.; Wang, C.-g.; Dong, X.-g.; Liu, H.-z. Journal of Polymer Research 2006, 13, (6), 515-519.
46. Bahl, O.; Manocha, L. Carbon 1975, 13, (4), 297-300.
47. Sobhanipour, P.; Cheraghi, R.; Volinsky, A. A. Thermochimica Acta 2011, 518, (1), 101-106.
48. Brun, M.; Lallemand, A.; Quinson, J.-F.; Eyraud, C. Thermochimica acta 1977, 21, (1), 59-88.
49. Vollebregt, S.; Ishihara, R.; Tichelaar, F. D.; Hou, Y.; Beenakker, C. I. M. Carbon 2012, 50, (10), 3542-3554.
50. Johnson, D.; Tyson, C. Journal of Physics D: Applied Physics 1969, 2, (6), 787.