簡易檢索 / 詳目顯示

研究生: 吳牧寰
論文名稱: 以馬可夫鏈方法進行相對重要性分析與社群結構偵測
A Markov Chain Approach for Relative Centrality and Community Detection
指導教授: 張正尚
口試委員: 陳文村
張正尚
李端興
廖婉君
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 34
中文關鍵詞: 網路科學社群偵測馬可夫鏈相對重要性演算法
外文關鍵詞: network science, community detection, Markov chain, relative centrality, algorithm
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們在最近的研究中發展出一套針對網路進行結構分析的機率架構。在該架構中我們從具有對稱性質的二元機率分布(bivariate distribution)出發,以此機率分布對網路進行取樣,並且定義諸多概念,例如:相對重要性、重要性、社群強度以及模塊性(Modularity)。基於這些概念,我們進而提出一些進行區域社群偵測的演算法。
    而該機率架構有一個已知的缺陷,即是該二元機率分布必須具有對稱性質,也因此限制了能套用此架構的網路必須為無方向性。本論文之其中一目的即為延伸此架構的限制,使非對稱性的二元機率分布也能被允許。對了達到上述的目的,我們將馬可夫鏈的觀念引進至該架構,並且證明了相對重要性、重要性、社群強度以及模塊性的概念也能一併被延伸。然而在原本的架構中具有的某些性質也因此相對的弱化,特別是相互性質。也因此我們必須要擴增鄰近集合的定義,進一步修改原先提出的演算法。另外基於馬可夫鏈的狀態合成性質,我們也發展了一套進行狀態簡化並保留模塊性質的方法,該方法讓我們能夠不斷減少原先馬可夫鏈狀態集合的大小,但卻和原先的馬可夫鏈具有相同的模塊性。在使用該方法之後,我們即可以在有方向性的大型網路上進行快速社群偵測。
    在此論文中,我們也提出了一些將有方向性網路對應到馬可夫鏈上的方法,包括了隨機漫步(Random Walk)、佩奇排名(PageRank)以及擴散方法。而這些不同的對應方法在不同面向的考量下都有其各自的優點,尤其是擴散方法能讓我們在不同的時間規模中偵測出對應的社群結構,我們並且在附錄中證明了擴散方法底下的社群強度具有單調下降的性質。


    In our recent work, we developed a probabilistic framework for structural analysis of
    networks. In that framework, we start from sampling a network by a symmetric bivariate
    distribution and use that bivariate distribution to de ne various concepts, including relative
    centrality, centrality, community strength, and modularity. Based on these concepts,
    we then proposed a class of local community detection algorithms. One drawback for
    this framework is that the bivariate distribution has to be symmetric and that limits its
    applicability to undirected networks. The main objective of this paper is to extend such
    a framework to the setting where asymmetric bivariate distribution can be allowed. Our
    approach for the extension is to introduce Markov chains into the framework. We show
    that relative centrality, centrality, community strength and modularity can be extended
    in a similar manner. However, various properties, in particular the reciprocity property,
    are much weaker than before. As such, the local community detection algorithms need
    to be further modi ed by taking a larger neighboring set into account. By using the
    state aggregation property of Markov chains, we also develop a method for modularity
    preserving state reduction of a Markov chain. This method allows us to reduce the size of
    the states of a Markov chain while preserving its modularity. With such a state reduction
    method, we are then able to perform fast community detection for directed networks with
    a large number of nodes.
    In this paper, we also propose several methods of mapping directed networks to Markov
    chains, including random walks, PageRank and di usion. All these mappings have
    their own merits in structural analysis of networks. In particular, the di usion approach
    allows us to detect communities with respect to various time scales and we show that the
    community strength of a community under di usion is decreasing in time.

    1 Introduction 2 2 The framework 4 2.1 Markov chains 4 2.2 Centrality and relative centrality 6 2.3 Mapping networks to Markov chains 10 3 Community strength and local community detection 13 3.1 Community strength 13 3.2 Positively correlated sets and neighboring sets 14 3.3 Local community detection algorithms 17 4 Modularity and community detection 22 4.1 Modularity 22 4.2 Modularity preserving state reduction of a Markov chain 23 5 Conclusion 29 Appendix A Monotonicity property 31

    [1] Cheng-Shang Chang, Chih-Jung Chang, Duan-Shin Lee, andWanjiun Liao. Relative
    centrality and local community detection. Preprint.
    [2] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web
    search engine. Computer networks and ISDN systems, 30(1):107{117, 1998.
    [3] Reid Andersen, Fan Chung, and Kevin Lang. Local graph partitioning using pagerank
    vectors. In Foundations of Computer Science, 2006. FOCS'06. 47th Annual
    IEEE Symposium on, pages 475{486. IEEE, 2006.
    [4] Jure Leskovec, Kevin J Lang, Anirban Dasgupta, and Michael W Mahoney. Statistical properties of community structure in large social and information networks. In Proceedings of the 17th international conference on World Wide eb, pages 695{704.
    ACM, 2008.
    [5] Duncan JWatts and Steven H Strogatz. Collective dynamics of small-worldnetworks. Nature, 393(6684):440{442, 1998.
    [6] Renaud Lambiotte. Multi-scale modularity in complex networks. In Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks (WiOpt), 2010 Proceedings of the 8th International Symposium on, pages 546{553. IEEE, 2010.
    [7] J-C Delvenne, Sophia N Yaliraki, and Mauricio Barahona. Stability of graph communities across time scales. Proceedings of the National Academy of Sciences, 107(29):12755{12760, 2010.
    [8] Mark EJ Newman. Fast algorithm for detecting community structure in networks. Physical review E, 69(6):066133, 2004.
    [9] Andrea Lancichinetti and Santo Fortunato. Community detection algorithms: A comparative analysis. Physical review E, 80(5):056117, 2009.
    [10] Jure Leskovec, Kevin J Lang, and Michael Mahoney. Empirical comparison of algorithms for network community detection. In Proceedings of the 19th international conference on World wide web, pages 631{640. ACM, 2010.
    [11] Randolph Nelson. Probability, stochastic processes, and queueing theory: the math- ematics of computer performance modeling. Springer Verlag, 1995.
    [12] Linton C Freeman. A set of measures of centrality based on betweenness. Sociometry, pages 35{41, 1977.
    [13] Linton C Freeman. Centrality in social networks conceptual clari cation. Social networks, 1(3):215{239, 1979.
    [14] Mark Newman. Networks: an introduction. OUP Oxford, 2009.
    [15] Alexandre Arenas, Jordi Duch, Alberto Fernandez, and Sergio Gomez. Size reduction of complex networks preserving modularity. New Journal of Physics, 9(6):176, 2007.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE