簡易檢索 / 詳目顯示

研究生: 黃馨儀
Huang, Xin-Yi
論文名稱: 選殖與鑑定體外轉錄訊息RNA用酵素
Cloning and characterization of mRNA in vitro transcription enzymes
指導教授: 張晃猷
Chang, Hwan-You
口試委員: 張壯榮
Chang, Chuang-Rung
張晉源
Chang, Chin-Yuan
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 76
中文關鍵詞: 重組 T7 RNA 聚合酶E. coli poly(A) 聚合酶非洲豬瘟病毒mRNA-加帽酶 (NPR868R)非放射性T7 RNA 聚合酶活性檢測方法檢測鳥苷酸轉移酶活性的可視方法
外文關鍵詞: recombinant T7 RNA polymerase, E. coli poly(A) polymerase, African swine fever virus NP868R capping enzyme, Radioisotope-free T7 RNA polymerase assay, visual detection method for guanylyltransferase assay
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,RNA 藥物與RNA疫苗的應用逐漸成為生醫領域的另一種選擇。一開始領軍的是由RNAi製成的抗癌藥物,而後奮發突起的則是藉由2019年末爆發的嚴重特殊傳染性肺炎Covid-19而廣為使用的Covid-19 mRNA疫苗。鑒於mRNA的應用與研究將越來越廣泛,因此本論文旨在嘗試建立實驗室用mRNA製作平台。首先,將製作mRNA步驟所需的酵素以重組基因的方式在大腸桿菌中表達: T7 RNA polymerase使用trc/lac系統,大腸桿菌poly(A) polymerase (pcnB)使用T7/lac 系統,非洲豬瘟病毒mRNA-capping enzyme (NPR868R)則兩種表現系統皆進行測試。重組蛋白使用親和性管柱純化後,以肝素管柱減少核酸酶汙染,並採用非放射性方法檢測酵素活性。本研究成功表達並純化具活性之T7 RNA polymerase與大腸桿菌poly(A) polymerase。非洲豬瘟病毒的mRNA-capping enzyme作用方式屬於經典加帽反應,酵素可單體完成cap0。此蛋白在一般溫度或低溫表達皆不可溶,與GST、thioredoxin (Trx)融合仍難以增加其可溶且可純化性。使用尿素與鹽酸胍(guanidine HCL)變性Trx融合蛋白也無法得到可純化之蛋白。本研究亦修改產生短片段RNA的方法,並用來檢測鳥苷酸轉移酶活性的可視方法。


    In these days, RNA drugs and vaccines progressively became an alternative of the biomedical field. The anti-cancer drugs composed of RNAi first caught the eyebrows, and then the widely used mRNA vaccine against Covid-19 rose to fame. The application and analysis of mRNA is becoming more and more extensive. Thus, the aim of this study is to build a mRNA synthesis platform. First, recombinant enzymes for the synthesis of mRNA were generated in E. coli: T7 RNA polymerase was expressed by the trc/lac system; E. coli poly(A) polymerase (pcnB) was expressed by the T7/lac system; African swine fever virus NP868R capping enzyme was expressed using both of the above systems. Our enzyme purification strategy was first using nickel-charged resin chromatography, then with heparin affinity chromatography to eliminate ribonuclease contamination. Radioisotope-free assays for these enzymes were also established. This study successfully expressed and purified recombinant T7 RNA polymerase and poly(A) polymerase. African swine fever virus is a dsDNA virus. Its mRNA-capping enzyme reaction follows the conventional capping pathway, and this single-subunit enzyme can synthesize cap0 by itself. Regardless the expression temperature (37°C or 16°C) and fusion partner (glutathione transferase or thioredoxin), soluble protein could not be obtained. Using urea and guanidine-HCl to dissolve the inclusion body still could not obtain soluble recombinant protein for purification. Finally, this study also modified a visual detection method for guanylyltransferase assay using short RNA as the substrate.

    摘要 i Abstract ii 致謝 iii 目錄 iv 表目錄 viii 圖目錄 ix 壹、前言 (Introduction) 1 1.1 RNA therapy [13-15] 1 1.2 In vitro transcription 2 1.2.1 In vitro transcribed (IVT) mRNA 2 1.3 T7 RNA polymerase 3 1.4 Poly(A) polymerase (PAP I, pcnB) 4 1.5 Guanylyltransferase (NP868R) 5 貳、結果(Results) 6 2.1 Recombinant plasmid with T7RP and purification 6 2.1.1 質體pGEX5X1-T7RP的建構 6 2.1.2 測試GST-T7RP 重組蛋白在不同菌株的表達差異 6 2.1.3 GST-T7RP蛋白的表達與純化 7 2.1.4 蛋白活性單位之測試 8 2.2 Recombinant plasmid with pcnB and protein purification 11 2.2.1 含pcnB之重組質體建構 11 2.2.1.1 pET30-pcnB 11 2.2.1.2 pET28-pcnB 12 2.2.2 測試E. coli PAP I 在不同菌株與溫度的表現 12 2.2.3 蛋白活性的初測試 12 2.2.4 不含 6×His-tag的PAP I的表達與純化 13 2.2.5 蛋白活性的初測試 13 2.2.6 誘導蛋白6×His-PAP I的表達與純化 14 2.3 Recombinant plasmid with NP868R and purification 15 2.3.1 含NP868R之重組質體建構 15 2.3.1.1 pET28-NP868R 15 2.3.2 改善蛋白的溶解度與表達 16 2.3.2.1 降低誘導蛋白產量 16 2.3.2.2 Fusion protein 17 2.3.2.2.1 GST-GTase 17 2.3.2.2.1.1 誘導與純化測試 17 2.3.2.2.1.2 改變液態培養基pH值與滲透壓 18 2.3.2.2.1.3 測試破菌buffer 18 2.3.2.2.2 Trx-GTase 18 2.3.2.2.2.1 以變性方法純化 19 2.3.2.3 片斷化ASFV GTase 20 2.3.2.3.1 蛋白表達測試 20 2.3.2.3.2 純化測試 20 2.3.2.4 不同E. coli 菌株的表達 21 2.3.2.4.1 Origami2(DE3) 21 2.3.2.4.2 Rosetta-gami2(DE3) 21 2.3.2.4.3 BL21(DE3)pLysS 22 2.3.2.4.3.1 低溫蛋白表達與純化測試 22 2.3.2.4.3.2 添加少量酒精以增加重組蛋白之表達 22 2.3.2.4.3.3 以西方墨點法檢測目標蛋白ASFV GTase在BL21(DE3) pLysS的表達 23 2.3.2.5 在細胞裂解過程中添加穩定劑以增進重組蛋白的溶解度 23 2.4 Ribonuclease Assay Using Methylene Blue 25 2.4.1 在有/無RNA存在下,光譜偏移量 25 2.4.2 比較 RNA 被不同濃度的RNaseA降解後的光譜變化 25 2.4.3 不同濃度RNase A隨著時間在688 nm的吸光值變化 26 2.4.4 利用methylene blue RNase assay 偵測純化後的T7 RNA polymerase中核糖核酸酶汙染的程度 28 2.4.5 利用methylene blue RNase assay 偵測純化後的E. coli poly(A) polymerase I中核糖核酸酶汙染的程度 29 2.5 Short RNA synthesis and GTase assay establishment 29 2.5.1 DNA模板設計 29 2.5.2 plasmid construction 30 2.5.3 IVT的結果 31 2.5.3.1 pUC19ᵠ2.5-42G16U IVT 31 2.5.3.2 pUC19ᵠ2.5-42G15U IVT 32 2.5.4 小片段 IVT的條件測試 33 2.5.4.1 尋找PAGE圖中高背景的來源 33 2.5.4.2 不同MgCl2濃度與反應時間對small RNA IVT 的影響 34 2.5.4.3 不同限制酵素切割位與NTPs的比率對IVT的影響 34 2.5.4.4 控制NTPs製造固定長度的小片段RNA 35 2.5.5 GTase assay 36 參、討論 (Discussion) 37 3.1 T7RP 37 3.2 PAP I 39 3.3 NP868R 40 3.4 Ribonuclease Assay Using Methylene Blue 40 3.4.1 比較 RNA 被不同濃度的RNaseA降解後的光譜變化 40 3.4.2 利用methylene blue RNase assay 偵測純化後的T7 RNA polymerase中核糖核酸酶汙染的程度 40 3.5 Short RNA synthesis and GTase assay establishment 41 肆、材料與方法(Materials and methods) 42 4.1 材料 42 4.1.1 化學藥劑 42 4.1.2 常用商用試劑套件(commercial kits)與酵素 42 4.1.3 儀器 42 4.1.4 菌株 43 4.1.5 質體(plasmid) 43 4.1.6 引子(primers)與寡核苷酸(oligonucleotide) 45 4.1.7 Stock buffer composition for preparation of SDS-PAGE 46 4.2 方法 47 4.2.1 克隆(clone) 47 4.2.1.1 設計primer 47 4.2.1.2 Fragment PCR 47 4.2.1.3 Agarose gel electrophoresis 48 4.2.1.4 PCR clean-up 48 4.2.1.5 判定DNA的濃度 48 4.2.1.6 restriction enzyme digestion (酵切與接合) 49 4.2.1.7 ligation of vector and insert (質體接合) 49 4.2.1.8 Transformation (轉型細菌) 49 4.2.1.8.1 Chemical transformation: 49 4.2.1.8.2 Electroporation transformation: 50 4.2.1.9 Competent cell preparation(勝任細胞的製備) 50 4.2.1.9.1 chemically competent cell (化學勝任細胞) 50 4.2.1.9.2 electrocompetent cells(電勝任細胞) 50 4.2.1.10 抽取細菌質體 50 4.2.1.11 Colony PCR (檢查用) 51 4.2.2 蛋白誘導、純化與不可溶蛋白樣品製備方法 52 4.2.2.1 蛋白誘導表達測試 52 4.2.2.2 SDS-PAGE 52 4.2.2.2.1 拉姆利系統(Laemmli system, Glycine-SDS-PAGE) 52 4.2.2.2.2 Tris-Acetate系統 53 4.2.2.3 不可溶蛋白的變性可溶樣品之製備 54 4.2.2.4 蛋白純化 54 4.2.2.4.1 收集菌體與裂解菌體 54 4.2.2.4.2 Nickle column純化方法 54 4.2.2.4.3 Glutathione column純化方法 55 4.2.2.4.4 Heparin column純化方法 55 4.2.2.5 蛋白定量 55 4.2.2.6 裂解添加劑測試 55 4.2.2.6.1 以自誘導培養液製造大量培養物 55 4.2.2.6.2 第一輪添加劑篩選 56 4.2.2.6.3 第二輪添加劑篩選 56 4.2.3 RNA的製備、純化與定量 56 4.2.3.1 大於300 nt RNA的製備 56 4.2.3.2 大於300 nt RNA純化 57 4.2.3.3 Small RNA的製備 57 4.2.3.4 Small RNA的純化 57 4.2.3.5 RNA的定量 58 4.2.3.6 A-tailing 58 4.2.3.7 Capping 58 4.2.4 Ribonuclease Assay Using Methylene Blue 58 4.2.4.1 在有/無RNA存在下,光譜偏移量 59 4.2.4.2 比較RNA被不同濃度的RNaseA降解後的光譜變化 59 伍、參考資料 (Reference) 60 陸、補充(supplementary) 69

    1. Belmont, J.W., Henkel-Tigges, J., Chang, S.M., et al., Expression of human adenosine deaminase in murine haematopoietic progenitor cells following retroviral transfer. Nature, 1986. 322(6077): p. 385-7.
    2. Nicolau, C., Le Pape, A., Soriano, P., et al., In vivo expression of rat insulin after intravenous administration of the liposome-entrapped gene for rat insulin I. Proc Natl Acad Sci U S A, 1983. 80(4): p. 1068-72.
    3. Morgan, R.A. and Anderson, W.F., Gene therapy, in The Polymerase Chain Reaction, K.B. Mullis, F. Ferré, and R.A. Gibbs, Editors. 1994, Birkhäuser Boston: Boston, MA. p. 357-366.
    4. Friedmann, T., Progress toward human gene therapy. Science, 1989. 244(4910): p. 1275-81.
    5. Wu, G.Y. and Wu, C.H., Receptor-mediated gene delivery and expression in vivo. Journal of Biological Chemistry, 1988. 263(29): p. 14621-14624.
    6. Kaneda, Y., Iwai, K., and Uchida, T., Increased expression of DNA cointroduced with nuclear protein in adult rat liver. Science, 1989. 243(4889): p. 375-8.
    7. Benvenisty, N. and Reshef, L., Direct introduction of genes into rats and expression of the genes. Proc Natl Acad Sci U S A, 1986. 83(24): p. 9551-5.
    8. Malone, R.W., Felgner, P.L., and Verma, I.M., Cationic liposome-mediated RNA transfection. Proc Natl Acad Sci U S A, 1989. 86(16): p. 6077-81.
    9. Felgner, P.L. and Ringold, G.M., Cationic liposome-mediated transfection. Nature, 1989. 337(6205): p. 387-8.
    10. Singhal, A. and Huang, L., Gene transfer in mammalian cells using liposomes as carriers, in Gene Therapeutics: Methods and Applications of Direct Gene Transfer, J.A. Wolff, Editor. 1994, Birkhäuser Boston: Boston, MA. p. 118-142.
    11. Coutts, M.C., Human gene therapy. Kennedy Inst Ethics J, 1994. 4(1): p. 63-83.
    12. Wolff, J.A., Malone, R.W., Williams, P., et al., Direct gene transfer into mouse muscle in vivo. Science, 1990. 247(4949 Pt 1): p. 1465-8.
    13. Yu, A.M., Choi, Y.H., and Tu, M.J., RNA drugs and RNA targets for small molecules: principles, progress, and challenges. Pharmacol Rev, 2020. 72(4): p. 862-898.
    14. Kim, Y.K., RNA therapy: current status and future potential. Chonnam Med J, 2020. 56(2): p. 87-93.
    15. Lam, J.K., Chow, M.Y., Zhang, Y., et al., siRNA versus miRNA as therapeutics for gene silencing. Mol Ther Nucleic Acids, 2015. 4(9): p. e252.
    16. Zamecnik, P.C. and Stephenson, M.L., Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc Natl Acad Sci U S A, 1978. 75(1): p. 280-4.
    17. Fire, A., Xu, S., Montgomery, M.K., et al., Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 1998. 391(6669): p. 806-811.
    18. Zamore, P.D., Tuschl, T., Sharp, P.A., et al., RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell, 2000. 101(1): p. 25-33.
    19. Watts, J.K. and Corey, D.R., Silencing disease genes in the laboratory and the clinic. J Pathol, 2012. 226(2): p. 365-79.
    20. Lennox, K.A. and Behlke, M.A., Cellular localization of long non-coding RNAs affects silencing by RNAi more than by antisense oligonucleotides. Nucleic Acids Res, 2016. 44(2): p. 863-77.
    21. Lee, R.C., Feinbaum, R.L., and Ambros, V., The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993. 75(5): p. 843-54.
    22. Martinon, F., Krishnan, S., Lenzen, G., et al., Induction of virus-specific cytotoxic T lymphocytes in vivo by liposome-entrapped mRNA. Eur J Immunol, 1993. 23(7): p. 1719-22.
    23. Corey, L., Mascola, J.R., Fauci, A.S., et al., A strategic approach to COVID-19 vaccine R&D. Science, 2020. 368(6494): p. 948-950.
    24. Bautz, E.K., Regulation of RNA synthesis. Prog Nucleic Acid Res Mol Biol, 1972. 12: p. 129-60.
    25. Kennell, J.C. and Lambowitz, A.M., Development of an in vitro transcription system for Neurospora crassa mitochondrial DNA and identification of transcription initiation sites. Mol Cell Biol, 1989. 9(9): p. 3603-13.
    26. Milligan, J.F., Groebe, D.R., Witherell, G.W., et al., Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucleic Acids Res, 1987. 15(21): p. 8783-98.
    27. Milligan, J.F. and Uhlenbeck, O.C., Synthesis of small RNAs using T7 RNA polymerase. Methods Enzymol, 1989. 180: p. 51-62.
    28. Melton, D.A., Krieg, P.A., Rebagliati, M.R., et al., Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Res, 1984. 12(18): p. 7035-56.
    29. Chamberlin, M. and Ryan, T., 4 Bacteriophage DNA-dependent RNA polymerases, in The Enzymes, P.D. Boyer, Editor. 1982, Academic Press. p. 87-108.
    30. McAllister, W.T., Küpper, H., and Bautz, E.K., Kinetics of transcription by the bacteriophage-T3 RNA polymerase in vitro. Eur J Biochem, 1973. 34(3): p. 489-501.
    31. Morris, C.E., Klement, J.F., and McAllister, W.T., Cloning and expression of the bacteriophage T3 RNA polymerase gene. Gene, 1986. 41(2-3): p. 193-200.
    32. Beckert, B. and Masquida, B., Synthesis of RNA by in vitro transcription. Methods Mol Biol, 2011. 703: p. 29-41.
    33. Rau, M., Ohlmann, T., Morley, S.J., et al., A reevaluation of the cap-binding protein, eIF4E, as a rate-limiting factor for initiation of translation in reticulocyte lysate. J Biol Chem, 1996. 271(15): p. 8983-90.
    34. Modrak-Wojcik, A., Gorka, M., Niedzwiecka, K., et al., Eukaryotic translation initiation is controlled by cooperativity effects within ternary complexes of 4E-BP1, eIF4E, and the mRNA 5' cap. FEBS Lett, 2013. 587(24): p. 3928-34.
    35. Wells, S.E., Hillner, P.E., Vale, R.D., et al., Circularization of mRNA by eukaryotic translation initiation factors. Mol Cell, 1998. 2(1): p. 135-40.
    36. Garneau, N.L., Wilusz, J., and Wilusz, C.J., The highways and byways of mRNA decay. Nat Rev Mol Cell Biol, 2007. 8(2): p. 113-26.
    37. Shyu, A.B., Wilkinson, M.F., and van Hoof, A., Messenger RNA regulation: to translate or to degrade. Embo j, 2008. 27(3): p. 471-81.
    38. Balagopal, V., Fluch, L., and Nissan, T., Ways and means of eukaryotic mRNA decay. Biochim Biophys Acta, 2012. 1819(6): p. 593-603.
    39. Houseley, J. and Tollervey, D., The many pathways of RNA degradation. Cell, 2009. 136(4): p. 763-76.
    40. Pasquinelli, A.E., Dahlberg, J.E., and Lund, E., Reverse 5' caps in RNAs made in vitro by phage RNA polymerases. Rna, 1995. 1(9): p. 957-67.
    41. Stepinski, J., Waddell, C., Stolarski, R., et al., Synthesis and properties of mRNAs containing the novel "anti-reverse" cap analogs 7-methyl(3'-O-methyl)GpppG and 7-methyl (3'-deoxy)GpppG. Rna, 2001. 7(10): p. 1486-95.
    42. Grudzien-Nogalska, E., Jemielity, J., Kowalska, J., et al., Phosphorothioate cap analogs stabilize mRNA and increase translational efficiency in mammalian cells. Rna, 2007. 13(10): p. 1745-55.
    43. Kaczmarek, J.C., Kowalski, P.S., and Anderson, D.G., Advances in the delivery of RNA therapeutics: from concept to clinical reality. Genome Medicine, 2017. 9(1): p. 60.
    44. Sahin, U., Karikó, K., and Türeci, Ö., mRNA-based therapeutics — developing a new class of drugs. Nature Reviews Drug Discovery, 2014. 13(10): p. 759-780.
    45. Holtkamp, S., Kreiter, S., Selmi, A., et al., Modification of antigen-encoding RNA increases stability, translational efficacy, and T-cell stimulatory capacity of dendritic cells. Blood, 2006. 108(13): p. 4009-17.
    46. Mockey, M., Gonçalves, C., Dupuy, F.P., et al., mRNA transfection of dendritic cells: synergistic effect of ARCA mRNA capping with Poly(A) chains in cis and in trans for a high protein expression level. Biochem Biophys Res Commun, 2006. 340(4): p. 1062-8.
    47. Kuhn, A.N., Beiβert, T., Simon, P., et al., mRNA as a versatile tool for exogenous protein expression. Curr Gene Ther, 2012. 12(5): p. 347-61.
    48. Bergman, N., Moraes, K.C., Anderson, J.R., et al., Lsm proteins bind and stabilize RNAs containing 5' poly(A) tracts. Nat Struct Mol Biol, 2007. 14(9): p. 824-31.
    49. Berben-Bloemheuvel, G., Kasperaitis, M.A., van Heugten, H., et al., Interaction of initiation factors with the cap structure of chimaeric mRNA containing the 5'-untranslated regions of Semliki Forest virus RNA is related to translational efficiency. Eur J Biochem, 1992. 208(3): p. 581-7.
    50. Otsuka, H., Fukao, A., Funakami, Y., et al., Emerging evidence of translational control by AU-rich element-binding proteins. Front Genet, 2019. 10: p. 332.
    51. Chen, C.Y. and Shyu, A.B., AU-rich elements: characterization and importance in mRNA degradation. Trends Biochem Sci, 1995. 20(11): p. 465-70.
    52. Garneau, N.L., Sokoloski, K.J., Opyrchal, M., et al., The 3' untranslated region of sindbis virus represses deadenylation of viral transcripts in mosquito and mammalian cells. J Virol, 2008. 82(2): p. 880-92.
    53. Jiang, Y., Xu, X.S., and Russell, J.E., A nucleolin-binding 3' untranslated region element stabilizes beta-globin mRNA in vivo. Mol Cell Biol, 2006. 26(6): p. 2419-29.
    54. Karikó, K., Muramatsu, H., Keller, J.M., et al., Increased erythropoiesis in mice injected with submicrogram quantities of pseudouridine-containing mRNA encoding erythropoietin. Mol Ther, 2012. 20(5): p. 948-53.
    55. Balachandran, S., Roberts, P.C., Brown, L.E., et al., Essential role for the dsRNA-dependent protein kinase PKR in innate immunity to viral infection. Immunity, 2000. 13(1): p. 129-141.
    56. Karikó, K., Buckstein, M., Ni, H., et al., Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity, 2005. 23(2): p. 165-75.
    57. Karikó, K., Muramatsu, H., Welsh, F.A., et al., Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Molecular Therapy, 2008. 16(11): p. 1833-1840.
    58. Karikó, K., Muramatsu, H., Ludwig, J., et al., Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA. Nucleic Acids Res, 2011. 39(21): p. e142.
    59. Fuchs, E. and Fuchs, C.M., In vitro synthesis of T3 and T7 RNA polymerase at low magnesium concentration. FEBS Lett, 1971. 19(2): p. 159-162.
    60. Golomb, M. and Chamberlin, M., Characterization of T7-specific ribonucleic acid polymerase. IV. Resolution of the major in vitro transcripts by gel electrophoresis. J Biol Chem, 1974. 249(9): p. 2858-63.
    61. Stump, W.T. and Hall, K.B., SP6 RNA polymerase efficiently synthesizes RNA from short double-stranded DNA templates. Nucleic Acids Res, 1993. 21(23): p. 5480-4.
    62. Taylor, D.R. and Mathews, M.B., Transcription by SP6 RNA polymerase exhibits an ATP dependence that is influenced by promoter topology. Nucleic Acids Res, 1993. 21(8): p. 1927-33.
    63. Helm, M., Brulé, H., Giegé, R., et al., More mistakes by T7 RNA polymerase at the 5' ends of in vitro-transcribed RNAs. Rna, 1999. 5(5): p. 618-21.
    64. Sastry, S.S. and Ross, B.M., Nuclease activity of T7 RNA polymerase and the heterogeneity of transcription elongation complexes*. Journal of Biological Chemistry, 1997. 272(13): p. 8644-8652.
    65. Borkotoky, S. and Murali, A., The highly efficient T7 RNA polymerase: a wonder macromolecule in biological realm. Int J Biol Macromol, 2018. 118(Pt A): p. 49-56.
    66. Fuerst, T.R., Niles, E.G., Studier, F.W., et al., Eukaryotic transient-expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase. Proc Natl Acad Sci U S A, 1986. 83(21): p. 8122-6.
    67. Cao, G.J. and Sarkar, N., Identification of the gene for an Escherichia coli poly(A) polymerase. Proc Natl Acad Sci U S A, 1992. 89(21): p. 10380-4.
    68. Binns, N. and Masters, M., Expression of the Escherichia coli pcnB gene is translationally limited using an inefficient start codon: a second chromosomal example of translation initiated at AUU. Mol Microbiol, 2002. 44(5): p. 1287-98.
    69. Feng, Y. and Cohen, S.N., Unpaired terminal nucleotides and 5' monophosphorylation govern 3' polyadenylation by Escherichia coli poly(A) polymerase I. Proc Natl Acad Sci U S A, 2000. 97(12): p. 6415-20.
    70. Yehudai-Resheff, S. and Schuster, G., Characterization of the E.coli poly(A) polymerase: nucleotide specificity, RNA-binding affinities and RNA structure dependence. Nucleic Acids Res, 2000. 28(5): p. 1139-44.
    71. Raynal, L.C. and Carpousis, A.J., Poly(A) polymerase I of Escherichia coli: characterization of the catalytic domain, an RNA binding site and regions for the interaction with proteins involved in mRNA degradation. Mol Microbiol, 1999. 32(4): p. 765-75.
    72. Jasiecki, J. and Wegrzyn, G., Phosphorylation of Escherichia coli poly(A) polymerase I and effects of this modification on the enzyme activity. FEMS Microbiol Lett, 2006. 261(1): p. 118-22.
    73. Salas, M.L., Kuznar, J., and Viñuela, E., Polyadenylation, methylation, and capping of the RNA synthesized in vitro by African swine fever virus. Virology, 1981. 113(2): p. 484-91.
    74. Pena, L., Yáñez, R.J., Revilla, Y., et al., African swine fever virus guanylyltransferase. Virology, 1993. 193(1): p. 319-28.
    75. Eaton, H.E., Kobayashi, T., Dermody, T.S., et al., African swine fever virus NP868R capping enzyme promotes reovirus rescue during reverse genetics by promoting reovirus protein expression, virion assembly, and RNA Incorporation into infectious virions. J Virol, 2017. 91(11).
    76. Tabor, S. and Richardson, C.C., A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc Natl Acad Sci U S A, 1985. 82(4): p. 1074-8.
    77. Grodberg, J. and Dunn, J.J., ompT encodes the Escherichia coli outer membrane protease that cleaves T7 RNA polymerase during purification. J Bacteriol, 1988. 170(3): p. 1245-53.
    78. Lopez, M.A., Jr., Mackler, R.M., and Yoder, K.E., Removal of nuclease contamination during purification of recombinant prototype foamy virus integrase. J Virol Methods, 2016. 235: p. 134-138.
    79. Sørensen, H.P. and Mortensen, K.K., Soluble expression of recombinant proteins in the cytoplasm of Escherichia coli. Microbial Cell Factories, 2005. 4(1): p. 1.
    80. Prasad, S., Khadatare, P.B., and Roy, I., Effect of chemical chaperones in improving the solubility of recombinant proteins in Escherichia coli. Appl Environ Microbiol, 2011. 77(13): p. 4603-9.
    81. Myette, J.R. and Niles, E.G., Domain structure of the vaccinia virus mRNA capping enzyme. Expression in Escherichia coli of a subdomain possessing the RNA 5'-triphosphatase and guanylyltransferase activities and a kinetic comparison to the full-size enzyme. J Biol Chem, 1996. 271(20): p. 11936-44.
    82. Kyrieleis, O.J., Chang, J., de la Peña, M., et al., Crystal structure of vaccinia virus mRNA capping enzyme provides insights into the mechanism and evolution of the capping apparatus. Structure, 2014. 22(3): p. 452-65.
    83. Chhetri, G., Kalita, P., and Tripathi, T., An efficient protocol to enhance recombinant protein expression using ethanol in Escherichia coli. MethodsX, 2015. 2: p. 385-91.
    84. Leibly, D.J., Nguyen, T.N., Kao, L.T., et al., Stabilizing additives added during cell lysis aid in the solubilization of recombinant proteins. PLoS One, 2012. 7(12): p. e52482.
    85. Lebendiker, M. and Danieli, T., Production of prone-to-aggregate proteins. FEBS Letters, 2014. 588(2): p. 236-246.
    86. Lebendiker, M., Maes, M., and Friedler, A., A screening methodology for purifying proteins with aggregation problems. Methods Mol Biol, 2015. 1258: p. 261-81.
    87. Churion, K.A. and Bondos, S.E., Identifying solubility-promoting buffers for intrinsically disordered proteins prior to purification. Methods Mol Biol, 2012. 896: p. 415-27.
    88. Greiner-Stoeffele, T., Grunow, M., and Hahn, U., A general ribonuclease assay using methylene blue. Anal Biochem, 1996. 240(1): p. 24-8.
    89. Dubendorff, J.W. and Studier, F.W., Controlling basal expression in an inducible T7 expression system by blocking the target T7 promoter with lac repressor. J Mol Biol, 1991. 219(1): p. 45-59.
    90. Studier, F.W., Use of bacteriophage T7 lysozyme to improve an inducible T7 expression system. J Mol Biol, 1991. 219(1): p. 37-44.
    91. Dubendorff, J.W. and Studier, F.W., Creation of a T7 autogene. Cloning and expression of the gene for bacteriophage T7 RNA polymerase under control of its cognate promoter. J Mol Biol, 1991. 219(1): p. 61-8.
    92. Davanloo, P., Rosenberg, A.H., Dunn, J.J., et al., Cloning and expression of the gene for bacteriophage T7 RNA polymerase. Proc Natl Acad Sci U S A, 1984. 81(7): p. 2035-9.
    93. He, B., Rong, M., Lyakhov, D., et al., Rapid mutagenesis and purification of phage RNA polymerases. Protein Expr Purif, 1997. 9(1): p. 142-51.
    94. Ellinger, T. and Ehricht, R., Single-step purification of T7 RNA polymerase with a 6-histidine tag. Biotechniques, 1998. 24(5): p. 718-20.
    95. Huang, J., Brieba, L.G., and Sousa, R., Misincorporation by wild-type and mutant T7 RNA polymerases:  identification of interactions that reduce misincorporation rates by stabilizing the catalytically incompetent open conformation. Biochemistry, 2000. 39(38): p. 11571-11580.
    96. Jasiecki, J. and Wegrzyn, G., Growth-rate dependent RNA polyadenylation in Escherichia coli. EMBO Rep, 2003. 4(2): p. 172-7.
    97. Mohanty, B.K., Maples, V.F., and Kushner, S.R., The Sm-like protein Hfq regulates polyadenylation dependent mRNA decay in Escherichia coli. Molecular Microbiology, 2004. 54(4): p. 905-920.
    98. Raynal, L.C., Krisch, H.M., and Carpousis, A.J., Bacterial poly(A) polymerase: an enzyme that modulates RNA stability. Biochimie, 1996. 78(6): p. 390-398.
    99. Jasiecki, J. and Węgrzyn, G., Localization of Escherichia coli poly(A) polymerase I in cellular membrane. Biochemical and Biophysical Research Communications, 2005. 329(2): p. 598-602.
    100. Jaïs, P.H., Decroly, E., Jacquet, E., et al., C3P3-G1: first generation of a eukaryotic artificial cytoplasmic expression system. Nucleic Acids Res, 2019. 47(5): p. 2681-2698.
    101. Du, X., Gao, Z.Q., Geng, Z., et al., Structure and biochemical characteristic of the methyltransferase (MTase) domain of RNA capping enzyme from African swine fever virus. J Virol, 2020. 95(5).
    102. Benarroch, D., Smith, P., and Shuman, S., Characterization of a trifunctional mimivirus mRNA capping enzyme and crystal structure of the RNA triphosphatase domain. Structure, 2008. 16(4): p. 501-512.
    103. Singh, A., Upadhyay, V., Upadhyay, A.K., et al., Protein recovery from inclusion bodies of Escherichia coli using mild solubilization process. Microbial Cell Factories, 2015. 14(1): p. 41.
    104. Cleavage close to the end of DNA fragments. [cited 2022 7/9]; Available from: https://international.neb.com/tools-and-resources/usage-guidelines/cleavage-close-to-the-end-of-dna-fragments.
    105. Studier, F.W., Protein production by auto-induction in high-density shaking cultures. Protein Expression and Purification, 2005. 41(1): p. 207-234.
    106. Petrov, A., Wu, T., Puglisi, E.V., et al., RNA purification by preparative polyacrylamide gel electrophoresis. Methods Enzymol, 2013. 530: p. 315-30.
    107. Chen, Z. and Ruffner, D.E., Modified crush-and-soak method for recovering oligodeoxynucleotides from polyacrylamide gel. Biotechniques, 1996. 21(5): p. 820-2.

    QR CODE