研究生: |
黃馨儀 Huang, Xin-Yi |
---|---|
論文名稱: |
選殖與鑑定體外轉錄訊息RNA用酵素 Cloning and characterization of mRNA in vitro transcription enzymes |
指導教授: |
張晃猷
Chang, Hwan-You |
口試委員: |
張壯榮
Chang, Chuang-Rung 張晉源 Chang, Chin-Yuan |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 76 |
中文關鍵詞: | 重組 T7 RNA 聚合酶 、E. coli poly(A) 聚合酶 、非洲豬瘟病毒mRNA-加帽酶 (NPR868R) 、非放射性T7 RNA 聚合酶活性檢測方法 、檢測鳥苷酸轉移酶活性的可視方法 |
外文關鍵詞: | recombinant T7 RNA polymerase, E. coli poly(A) polymerase, African swine fever virus NP868R capping enzyme, Radioisotope-free T7 RNA polymerase assay, visual detection method for guanylyltransferase assay |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,RNA 藥物與RNA疫苗的應用逐漸成為生醫領域的另一種選擇。一開始領軍的是由RNAi製成的抗癌藥物,而後奮發突起的則是藉由2019年末爆發的嚴重特殊傳染性肺炎Covid-19而廣為使用的Covid-19 mRNA疫苗。鑒於mRNA的應用與研究將越來越廣泛,因此本論文旨在嘗試建立實驗室用mRNA製作平台。首先,將製作mRNA步驟所需的酵素以重組基因的方式在大腸桿菌中表達: T7 RNA polymerase使用trc/lac系統,大腸桿菌poly(A) polymerase (pcnB)使用T7/lac 系統,非洲豬瘟病毒mRNA-capping enzyme (NPR868R)則兩種表現系統皆進行測試。重組蛋白使用親和性管柱純化後,以肝素管柱減少核酸酶汙染,並採用非放射性方法檢測酵素活性。本研究成功表達並純化具活性之T7 RNA polymerase與大腸桿菌poly(A) polymerase。非洲豬瘟病毒的mRNA-capping enzyme作用方式屬於經典加帽反應,酵素可單體完成cap0。此蛋白在一般溫度或低溫表達皆不可溶,與GST、thioredoxin (Trx)融合仍難以增加其可溶且可純化性。使用尿素與鹽酸胍(guanidine HCL)變性Trx融合蛋白也無法得到可純化之蛋白。本研究亦修改產生短片段RNA的方法,並用來檢測鳥苷酸轉移酶活性的可視方法。
In these days, RNA drugs and vaccines progressively became an alternative of the biomedical field. The anti-cancer drugs composed of RNAi first caught the eyebrows, and then the widely used mRNA vaccine against Covid-19 rose to fame. The application and analysis of mRNA is becoming more and more extensive. Thus, the aim of this study is to build a mRNA synthesis platform. First, recombinant enzymes for the synthesis of mRNA were generated in E. coli: T7 RNA polymerase was expressed by the trc/lac system; E. coli poly(A) polymerase (pcnB) was expressed by the T7/lac system; African swine fever virus NP868R capping enzyme was expressed using both of the above systems. Our enzyme purification strategy was first using nickel-charged resin chromatography, then with heparin affinity chromatography to eliminate ribonuclease contamination. Radioisotope-free assays for these enzymes were also established. This study successfully expressed and purified recombinant T7 RNA polymerase and poly(A) polymerase. African swine fever virus is a dsDNA virus. Its mRNA-capping enzyme reaction follows the conventional capping pathway, and this single-subunit enzyme can synthesize cap0 by itself. Regardless the expression temperature (37°C or 16°C) and fusion partner (glutathione transferase or thioredoxin), soluble protein could not be obtained. Using urea and guanidine-HCl to dissolve the inclusion body still could not obtain soluble recombinant protein for purification. Finally, this study also modified a visual detection method for guanylyltransferase assay using short RNA as the substrate.
1. Belmont, J.W., Henkel-Tigges, J., Chang, S.M., et al., Expression of human adenosine deaminase in murine haematopoietic progenitor cells following retroviral transfer. Nature, 1986. 322(6077): p. 385-7.
2. Nicolau, C., Le Pape, A., Soriano, P., et al., In vivo expression of rat insulin after intravenous administration of the liposome-entrapped gene for rat insulin I. Proc Natl Acad Sci U S A, 1983. 80(4): p. 1068-72.
3. Morgan, R.A. and Anderson, W.F., Gene therapy, in The Polymerase Chain Reaction, K.B. Mullis, F. Ferré, and R.A. Gibbs, Editors. 1994, Birkhäuser Boston: Boston, MA. p. 357-366.
4. Friedmann, T., Progress toward human gene therapy. Science, 1989. 244(4910): p. 1275-81.
5. Wu, G.Y. and Wu, C.H., Receptor-mediated gene delivery and expression in vivo. Journal of Biological Chemistry, 1988. 263(29): p. 14621-14624.
6. Kaneda, Y., Iwai, K., and Uchida, T., Increased expression of DNA cointroduced with nuclear protein in adult rat liver. Science, 1989. 243(4889): p. 375-8.
7. Benvenisty, N. and Reshef, L., Direct introduction of genes into rats and expression of the genes. Proc Natl Acad Sci U S A, 1986. 83(24): p. 9551-5.
8. Malone, R.W., Felgner, P.L., and Verma, I.M., Cationic liposome-mediated RNA transfection. Proc Natl Acad Sci U S A, 1989. 86(16): p. 6077-81.
9. Felgner, P.L. and Ringold, G.M., Cationic liposome-mediated transfection. Nature, 1989. 337(6205): p. 387-8.
10. Singhal, A. and Huang, L., Gene transfer in mammalian cells using liposomes as carriers, in Gene Therapeutics: Methods and Applications of Direct Gene Transfer, J.A. Wolff, Editor. 1994, Birkhäuser Boston: Boston, MA. p. 118-142.
11. Coutts, M.C., Human gene therapy. Kennedy Inst Ethics J, 1994. 4(1): p. 63-83.
12. Wolff, J.A., Malone, R.W., Williams, P., et al., Direct gene transfer into mouse muscle in vivo. Science, 1990. 247(4949 Pt 1): p. 1465-8.
13. Yu, A.M., Choi, Y.H., and Tu, M.J., RNA drugs and RNA targets for small molecules: principles, progress, and challenges. Pharmacol Rev, 2020. 72(4): p. 862-898.
14. Kim, Y.K., RNA therapy: current status and future potential. Chonnam Med J, 2020. 56(2): p. 87-93.
15. Lam, J.K., Chow, M.Y., Zhang, Y., et al., siRNA versus miRNA as therapeutics for gene silencing. Mol Ther Nucleic Acids, 2015. 4(9): p. e252.
16. Zamecnik, P.C. and Stephenson, M.L., Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc Natl Acad Sci U S A, 1978. 75(1): p. 280-4.
17. Fire, A., Xu, S., Montgomery, M.K., et al., Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 1998. 391(6669): p. 806-811.
18. Zamore, P.D., Tuschl, T., Sharp, P.A., et al., RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell, 2000. 101(1): p. 25-33.
19. Watts, J.K. and Corey, D.R., Silencing disease genes in the laboratory and the clinic. J Pathol, 2012. 226(2): p. 365-79.
20. Lennox, K.A. and Behlke, M.A., Cellular localization of long non-coding RNAs affects silencing by RNAi more than by antisense oligonucleotides. Nucleic Acids Res, 2016. 44(2): p. 863-77.
21. Lee, R.C., Feinbaum, R.L., and Ambros, V., The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993. 75(5): p. 843-54.
22. Martinon, F., Krishnan, S., Lenzen, G., et al., Induction of virus-specific cytotoxic T lymphocytes in vivo by liposome-entrapped mRNA. Eur J Immunol, 1993. 23(7): p. 1719-22.
23. Corey, L., Mascola, J.R., Fauci, A.S., et al., A strategic approach to COVID-19 vaccine R&D. Science, 2020. 368(6494): p. 948-950.
24. Bautz, E.K., Regulation of RNA synthesis. Prog Nucleic Acid Res Mol Biol, 1972. 12: p. 129-60.
25. Kennell, J.C. and Lambowitz, A.M., Development of an in vitro transcription system for Neurospora crassa mitochondrial DNA and identification of transcription initiation sites. Mol Cell Biol, 1989. 9(9): p. 3603-13.
26. Milligan, J.F., Groebe, D.R., Witherell, G.W., et al., Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucleic Acids Res, 1987. 15(21): p. 8783-98.
27. Milligan, J.F. and Uhlenbeck, O.C., Synthesis of small RNAs using T7 RNA polymerase. Methods Enzymol, 1989. 180: p. 51-62.
28. Melton, D.A., Krieg, P.A., Rebagliati, M.R., et al., Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Res, 1984. 12(18): p. 7035-56.
29. Chamberlin, M. and Ryan, T., 4 Bacteriophage DNA-dependent RNA polymerases, in The Enzymes, P.D. Boyer, Editor. 1982, Academic Press. p. 87-108.
30. McAllister, W.T., Küpper, H., and Bautz, E.K., Kinetics of transcription by the bacteriophage-T3 RNA polymerase in vitro. Eur J Biochem, 1973. 34(3): p. 489-501.
31. Morris, C.E., Klement, J.F., and McAllister, W.T., Cloning and expression of the bacteriophage T3 RNA polymerase gene. Gene, 1986. 41(2-3): p. 193-200.
32. Beckert, B. and Masquida, B., Synthesis of RNA by in vitro transcription. Methods Mol Biol, 2011. 703: p. 29-41.
33. Rau, M., Ohlmann, T., Morley, S.J., et al., A reevaluation of the cap-binding protein, eIF4E, as a rate-limiting factor for initiation of translation in reticulocyte lysate. J Biol Chem, 1996. 271(15): p. 8983-90.
34. Modrak-Wojcik, A., Gorka, M., Niedzwiecka, K., et al., Eukaryotic translation initiation is controlled by cooperativity effects within ternary complexes of 4E-BP1, eIF4E, and the mRNA 5' cap. FEBS Lett, 2013. 587(24): p. 3928-34.
35. Wells, S.E., Hillner, P.E., Vale, R.D., et al., Circularization of mRNA by eukaryotic translation initiation factors. Mol Cell, 1998. 2(1): p. 135-40.
36. Garneau, N.L., Wilusz, J., and Wilusz, C.J., The highways and byways of mRNA decay. Nat Rev Mol Cell Biol, 2007. 8(2): p. 113-26.
37. Shyu, A.B., Wilkinson, M.F., and van Hoof, A., Messenger RNA regulation: to translate or to degrade. Embo j, 2008. 27(3): p. 471-81.
38. Balagopal, V., Fluch, L., and Nissan, T., Ways and means of eukaryotic mRNA decay. Biochim Biophys Acta, 2012. 1819(6): p. 593-603.
39. Houseley, J. and Tollervey, D., The many pathways of RNA degradation. Cell, 2009. 136(4): p. 763-76.
40. Pasquinelli, A.E., Dahlberg, J.E., and Lund, E., Reverse 5' caps in RNAs made in vitro by phage RNA polymerases. Rna, 1995. 1(9): p. 957-67.
41. Stepinski, J., Waddell, C., Stolarski, R., et al., Synthesis and properties of mRNAs containing the novel "anti-reverse" cap analogs 7-methyl(3'-O-methyl)GpppG and 7-methyl (3'-deoxy)GpppG. Rna, 2001. 7(10): p. 1486-95.
42. Grudzien-Nogalska, E., Jemielity, J., Kowalska, J., et al., Phosphorothioate cap analogs stabilize mRNA and increase translational efficiency in mammalian cells. Rna, 2007. 13(10): p. 1745-55.
43. Kaczmarek, J.C., Kowalski, P.S., and Anderson, D.G., Advances in the delivery of RNA therapeutics: from concept to clinical reality. Genome Medicine, 2017. 9(1): p. 60.
44. Sahin, U., Karikó, K., and Türeci, Ö., mRNA-based therapeutics — developing a new class of drugs. Nature Reviews Drug Discovery, 2014. 13(10): p. 759-780.
45. Holtkamp, S., Kreiter, S., Selmi, A., et al., Modification of antigen-encoding RNA increases stability, translational efficacy, and T-cell stimulatory capacity of dendritic cells. Blood, 2006. 108(13): p. 4009-17.
46. Mockey, M., Gonçalves, C., Dupuy, F.P., et al., mRNA transfection of dendritic cells: synergistic effect of ARCA mRNA capping with Poly(A) chains in cis and in trans for a high protein expression level. Biochem Biophys Res Commun, 2006. 340(4): p. 1062-8.
47. Kuhn, A.N., Beiβert, T., Simon, P., et al., mRNA as a versatile tool for exogenous protein expression. Curr Gene Ther, 2012. 12(5): p. 347-61.
48. Bergman, N., Moraes, K.C., Anderson, J.R., et al., Lsm proteins bind and stabilize RNAs containing 5' poly(A) tracts. Nat Struct Mol Biol, 2007. 14(9): p. 824-31.
49. Berben-Bloemheuvel, G., Kasperaitis, M.A., van Heugten, H., et al., Interaction of initiation factors with the cap structure of chimaeric mRNA containing the 5'-untranslated regions of Semliki Forest virus RNA is related to translational efficiency. Eur J Biochem, 1992. 208(3): p. 581-7.
50. Otsuka, H., Fukao, A., Funakami, Y., et al., Emerging evidence of translational control by AU-rich element-binding proteins. Front Genet, 2019. 10: p. 332.
51. Chen, C.Y. and Shyu, A.B., AU-rich elements: characterization and importance in mRNA degradation. Trends Biochem Sci, 1995. 20(11): p. 465-70.
52. Garneau, N.L., Sokoloski, K.J., Opyrchal, M., et al., The 3' untranslated region of sindbis virus represses deadenylation of viral transcripts in mosquito and mammalian cells. J Virol, 2008. 82(2): p. 880-92.
53. Jiang, Y., Xu, X.S., and Russell, J.E., A nucleolin-binding 3' untranslated region element stabilizes beta-globin mRNA in vivo. Mol Cell Biol, 2006. 26(6): p. 2419-29.
54. Karikó, K., Muramatsu, H., Keller, J.M., et al., Increased erythropoiesis in mice injected with submicrogram quantities of pseudouridine-containing mRNA encoding erythropoietin. Mol Ther, 2012. 20(5): p. 948-53.
55. Balachandran, S., Roberts, P.C., Brown, L.E., et al., Essential role for the dsRNA-dependent protein kinase PKR in innate immunity to viral infection. Immunity, 2000. 13(1): p. 129-141.
56. Karikó, K., Buckstein, M., Ni, H., et al., Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity, 2005. 23(2): p. 165-75.
57. Karikó, K., Muramatsu, H., Welsh, F.A., et al., Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Molecular Therapy, 2008. 16(11): p. 1833-1840.
58. Karikó, K., Muramatsu, H., Ludwig, J., et al., Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA. Nucleic Acids Res, 2011. 39(21): p. e142.
59. Fuchs, E. and Fuchs, C.M., In vitro synthesis of T3 and T7 RNA polymerase at low magnesium concentration. FEBS Lett, 1971. 19(2): p. 159-162.
60. Golomb, M. and Chamberlin, M., Characterization of T7-specific ribonucleic acid polymerase. IV. Resolution of the major in vitro transcripts by gel electrophoresis. J Biol Chem, 1974. 249(9): p. 2858-63.
61. Stump, W.T. and Hall, K.B., SP6 RNA polymerase efficiently synthesizes RNA from short double-stranded DNA templates. Nucleic Acids Res, 1993. 21(23): p. 5480-4.
62. Taylor, D.R. and Mathews, M.B., Transcription by SP6 RNA polymerase exhibits an ATP dependence that is influenced by promoter topology. Nucleic Acids Res, 1993. 21(8): p. 1927-33.
63. Helm, M., Brulé, H., Giegé, R., et al., More mistakes by T7 RNA polymerase at the 5' ends of in vitro-transcribed RNAs. Rna, 1999. 5(5): p. 618-21.
64. Sastry, S.S. and Ross, B.M., Nuclease activity of T7 RNA polymerase and the heterogeneity of transcription elongation complexes*. Journal of Biological Chemistry, 1997. 272(13): p. 8644-8652.
65. Borkotoky, S. and Murali, A., The highly efficient T7 RNA polymerase: a wonder macromolecule in biological realm. Int J Biol Macromol, 2018. 118(Pt A): p. 49-56.
66. Fuerst, T.R., Niles, E.G., Studier, F.W., et al., Eukaryotic transient-expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase. Proc Natl Acad Sci U S A, 1986. 83(21): p. 8122-6.
67. Cao, G.J. and Sarkar, N., Identification of the gene for an Escherichia coli poly(A) polymerase. Proc Natl Acad Sci U S A, 1992. 89(21): p. 10380-4.
68. Binns, N. and Masters, M., Expression of the Escherichia coli pcnB gene is translationally limited using an inefficient start codon: a second chromosomal example of translation initiated at AUU. Mol Microbiol, 2002. 44(5): p. 1287-98.
69. Feng, Y. and Cohen, S.N., Unpaired terminal nucleotides and 5' monophosphorylation govern 3' polyadenylation by Escherichia coli poly(A) polymerase I. Proc Natl Acad Sci U S A, 2000. 97(12): p. 6415-20.
70. Yehudai-Resheff, S. and Schuster, G., Characterization of the E.coli poly(A) polymerase: nucleotide specificity, RNA-binding affinities and RNA structure dependence. Nucleic Acids Res, 2000. 28(5): p. 1139-44.
71. Raynal, L.C. and Carpousis, A.J., Poly(A) polymerase I of Escherichia coli: characterization of the catalytic domain, an RNA binding site and regions for the interaction with proteins involved in mRNA degradation. Mol Microbiol, 1999. 32(4): p. 765-75.
72. Jasiecki, J. and Wegrzyn, G., Phosphorylation of Escherichia coli poly(A) polymerase I and effects of this modification on the enzyme activity. FEMS Microbiol Lett, 2006. 261(1): p. 118-22.
73. Salas, M.L., Kuznar, J., and Viñuela, E., Polyadenylation, methylation, and capping of the RNA synthesized in vitro by African swine fever virus. Virology, 1981. 113(2): p. 484-91.
74. Pena, L., Yáñez, R.J., Revilla, Y., et al., African swine fever virus guanylyltransferase. Virology, 1993. 193(1): p. 319-28.
75. Eaton, H.E., Kobayashi, T., Dermody, T.S., et al., African swine fever virus NP868R capping enzyme promotes reovirus rescue during reverse genetics by promoting reovirus protein expression, virion assembly, and RNA Incorporation into infectious virions. J Virol, 2017. 91(11).
76. Tabor, S. and Richardson, C.C., A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc Natl Acad Sci U S A, 1985. 82(4): p. 1074-8.
77. Grodberg, J. and Dunn, J.J., ompT encodes the Escherichia coli outer membrane protease that cleaves T7 RNA polymerase during purification. J Bacteriol, 1988. 170(3): p. 1245-53.
78. Lopez, M.A., Jr., Mackler, R.M., and Yoder, K.E., Removal of nuclease contamination during purification of recombinant prototype foamy virus integrase. J Virol Methods, 2016. 235: p. 134-138.
79. Sørensen, H.P. and Mortensen, K.K., Soluble expression of recombinant proteins in the cytoplasm of Escherichia coli. Microbial Cell Factories, 2005. 4(1): p. 1.
80. Prasad, S., Khadatare, P.B., and Roy, I., Effect of chemical chaperones in improving the solubility of recombinant proteins in Escherichia coli. Appl Environ Microbiol, 2011. 77(13): p. 4603-9.
81. Myette, J.R. and Niles, E.G., Domain structure of the vaccinia virus mRNA capping enzyme. Expression in Escherichia coli of a subdomain possessing the RNA 5'-triphosphatase and guanylyltransferase activities and a kinetic comparison to the full-size enzyme. J Biol Chem, 1996. 271(20): p. 11936-44.
82. Kyrieleis, O.J., Chang, J., de la Peña, M., et al., Crystal structure of vaccinia virus mRNA capping enzyme provides insights into the mechanism and evolution of the capping apparatus. Structure, 2014. 22(3): p. 452-65.
83. Chhetri, G., Kalita, P., and Tripathi, T., An efficient protocol to enhance recombinant protein expression using ethanol in Escherichia coli. MethodsX, 2015. 2: p. 385-91.
84. Leibly, D.J., Nguyen, T.N., Kao, L.T., et al., Stabilizing additives added during cell lysis aid in the solubilization of recombinant proteins. PLoS One, 2012. 7(12): p. e52482.
85. Lebendiker, M. and Danieli, T., Production of prone-to-aggregate proteins. FEBS Letters, 2014. 588(2): p. 236-246.
86. Lebendiker, M., Maes, M., and Friedler, A., A screening methodology for purifying proteins with aggregation problems. Methods Mol Biol, 2015. 1258: p. 261-81.
87. Churion, K.A. and Bondos, S.E., Identifying solubility-promoting buffers for intrinsically disordered proteins prior to purification. Methods Mol Biol, 2012. 896: p. 415-27.
88. Greiner-Stoeffele, T., Grunow, M., and Hahn, U., A general ribonuclease assay using methylene blue. Anal Biochem, 1996. 240(1): p. 24-8.
89. Dubendorff, J.W. and Studier, F.W., Controlling basal expression in an inducible T7 expression system by blocking the target T7 promoter with lac repressor. J Mol Biol, 1991. 219(1): p. 45-59.
90. Studier, F.W., Use of bacteriophage T7 lysozyme to improve an inducible T7 expression system. J Mol Biol, 1991. 219(1): p. 37-44.
91. Dubendorff, J.W. and Studier, F.W., Creation of a T7 autogene. Cloning and expression of the gene for bacteriophage T7 RNA polymerase under control of its cognate promoter. J Mol Biol, 1991. 219(1): p. 61-8.
92. Davanloo, P., Rosenberg, A.H., Dunn, J.J., et al., Cloning and expression of the gene for bacteriophage T7 RNA polymerase. Proc Natl Acad Sci U S A, 1984. 81(7): p. 2035-9.
93. He, B., Rong, M., Lyakhov, D., et al., Rapid mutagenesis and purification of phage RNA polymerases. Protein Expr Purif, 1997. 9(1): p. 142-51.
94. Ellinger, T. and Ehricht, R., Single-step purification of T7 RNA polymerase with a 6-histidine tag. Biotechniques, 1998. 24(5): p. 718-20.
95. Huang, J., Brieba, L.G., and Sousa, R., Misincorporation by wild-type and mutant T7 RNA polymerases: identification of interactions that reduce misincorporation rates by stabilizing the catalytically incompetent open conformation. Biochemistry, 2000. 39(38): p. 11571-11580.
96. Jasiecki, J. and Wegrzyn, G., Growth-rate dependent RNA polyadenylation in Escherichia coli. EMBO Rep, 2003. 4(2): p. 172-7.
97. Mohanty, B.K., Maples, V.F., and Kushner, S.R., The Sm-like protein Hfq regulates polyadenylation dependent mRNA decay in Escherichia coli. Molecular Microbiology, 2004. 54(4): p. 905-920.
98. Raynal, L.C., Krisch, H.M., and Carpousis, A.J., Bacterial poly(A) polymerase: an enzyme that modulates RNA stability. Biochimie, 1996. 78(6): p. 390-398.
99. Jasiecki, J. and Węgrzyn, G., Localization of Escherichia coli poly(A) polymerase I in cellular membrane. Biochemical and Biophysical Research Communications, 2005. 329(2): p. 598-602.
100. Jaïs, P.H., Decroly, E., Jacquet, E., et al., C3P3-G1: first generation of a eukaryotic artificial cytoplasmic expression system. Nucleic Acids Res, 2019. 47(5): p. 2681-2698.
101. Du, X., Gao, Z.Q., Geng, Z., et al., Structure and biochemical characteristic of the methyltransferase (MTase) domain of RNA capping enzyme from African swine fever virus. J Virol, 2020. 95(5).
102. Benarroch, D., Smith, P., and Shuman, S., Characterization of a trifunctional mimivirus mRNA capping enzyme and crystal structure of the RNA triphosphatase domain. Structure, 2008. 16(4): p. 501-512.
103. Singh, A., Upadhyay, V., Upadhyay, A.K., et al., Protein recovery from inclusion bodies of Escherichia coli using mild solubilization process. Microbial Cell Factories, 2015. 14(1): p. 41.
104. Cleavage close to the end of DNA fragments. [cited 2022 7/9]; Available from: https://international.neb.com/tools-and-resources/usage-guidelines/cleavage-close-to-the-end-of-dna-fragments.
105. Studier, F.W., Protein production by auto-induction in high-density shaking cultures. Protein Expression and Purification, 2005. 41(1): p. 207-234.
106. Petrov, A., Wu, T., Puglisi, E.V., et al., RNA purification by preparative polyacrylamide gel electrophoresis. Methods Enzymol, 2013. 530: p. 315-30.
107. Chen, Z. and Ruffner, D.E., Modified crush-and-soak method for recovering oligodeoxynucleotides from polyacrylamide gel. Biotechniques, 1996. 21(5): p. 820-2.