簡易檢索 / 詳目顯示

研究生: 林泓鑫
Lin, Hung-Xin
論文名稱: 雙向三相變頻器之開發及其在直流微電網與傳統電網間之操控研究
DEVELOPMENT OF A BIDIRECTIONAL THREE-PHASE INVERTER AND ITS OPERATION CONTROL STUDY BETWEEN DC MICRO-GRID AND UTILITY GRID
指導教授: 廖聰明
Liaw, Chang-Ming
口試委員: 徐國鎧
Shyu, Kuo-Kai
江炫樟
Chiang, Hsuang-Chang
趙貴祥
Chao, Kuei-Hsiang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 168
中文關鍵詞: 雙向變頻器共振式直流/直流隔離轉換器不斷電電源供應器相鎖迴路主動電力濾波器直流微電網傳統電網併網數位信號處理器切換式整流器功率因數修正
外文關鍵詞: bidirectional inverter, LLC resonant DC/DC isolated converter, UPS, PLL, acive power filter, DC micro-grid, utility grid, grid-connected, DSP, switch-mode rectifier, power factor correction
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在開發一雙向變頻器,並從事微電網與傳統電網間之操控研究。應用適當之控制,所提之變頻器系統具有高彈性及高性能之雙向電力潮流控制能力。藉由所發展之相鎖迴路同步程序,直流微電網可經由所建變頻器平順地接至傳統電網。連網後,變頻器具有三種電力操控模式:(i)放電模式:由微電網提供所有區域負載之實功和虛功。此外,亦可規劃回送功率至傳統電網;(ii)充電模式:傳統電網供能至直流微電網與區域性負載。特定言之,可由傳統電網對微電網中之蓄電池組充電;(iii)浮充模式:所有區域性負載均由傳統電網供能。當傳統電網發生故障時,同步開關斷開將微電網隔離,變頻器系統操作在變頻器模式,由直流微電網提供負載不間斷之電源。综言之,所提之變頻器具電力調節器、主動電力濾波器及不斷電電源供應器之複合功能。
    此外,微電網亦可由一所開發之可插式交流/直流轉換器支援能量,其由一個三相單開關切換式整流器及一共振式直流/直流隔離轉換器所組成,而其交流輸入源可由備用配電迴路、風力發電機、微型渦輪機、飛輪發電機及混合電動車中之發電機等提供。所建構系統中所有功率級之控制均以數位信號處理器實現,並以一些模擬與實測結果顯示所建系統之操作性能。


    This thesis presents the development of a bidirectional inverter and operation control between DC micro-grid and utility grid. Through proper control for the developed inverter system, it possesses flexible and high-performance bidirectional power flow control capability. The DC micro-grid is connected to the utility grid via the inverter by the developed phase-locked-loop (PLL) synchronization process. The grid connected power conditioning control operation can be divided into three modes: (i) Discharging mode: all the local load real and reactive powers are supplied from the micro-grid. Moreover, the programmed powers can also be sent back to the utility grid; (ii) Charging mode: the utility grid supplies power to the DC micro-grid and local loads. In particular, the battery bank in micro-grid is charged from the mains; (iii) Floating mode: all the local loads are powered from the utility grid. When the utility grid failure occurs, the synchronization switch is opened to isolate the micro-grid. The inverter system is operated in inverter mode. The inverter system supply uninterruptible power from DC micro-grid to the load. The proposed inverter system possesses the combined functions of power conditioner, active power filter and uninterruptible power supply (UPS).
    In addition, the DC micro-grid can also be supported energy from a plug-in AC/DC converter system. It consists of a three-phase single-switch (3P1SW) switch-mode rectifier(SMR) and a LLC resonant DC/DC isolated converter. The AC input source may be provided from backup distribution network, wind generator, micro-turbine, fly-wheel generator, and hybrid-electric vehicle generator, etc. The controls of all constituted power stages are realized digitally using digital signal processor (DSP). Some simulated and experimental results are provided to verify the operating performance of the established system.

    ACKNOWLEDGEMENT ABSTRACT LIST OF CONTENTS LIST OF FIGURES LIST OF TABLES CHAPTER 1 INTRODUCTION CHAPTER 2 FUNDAMENTALS OF MICROGRID POWER SYSTEMS 2.1 Introduction 2.2 Micro-grid Configurations 2.3 Some Sources and Storage Devices 2.4 PWM Inverters 2.4.1 Classifications 2.4.2 Some key Issues 2.4.3 Non-isolated Sinusoidal PWM Inverters 2.4.4 Isolated Sinusoidal PWM Inverters 2.4.5 Power Quality 2.5 Some Three-phase Switch-Mode Rectifiers 2.6 System Configuration of the Developed Inverter and SMR-based plug-in AC/DC converter CHAPTER 3 THE DEVELOPMENT OF LOW-FREQUENCY ISOLATED THREE- PHASE INVERTER AND ITS AUTONOMOUS OPERATION 3.1 Introduction 3.2 The Employed DSP and some Digital Control Issue 3.3 System Configuration and Control Scheme 3.3.1 System Configuration 3.3.2 Control Scheme 3.3.3 Three-Phase Inverter Test Loads 3.4 Experimental Performance Evaluation under Linear Load 3.5 Experimental Performance Evaluation under Nonlinear Load CHAPTER 4 GRID-CONNECTED OPERATION BETWEEN MICROGRID AND UTILITY OF THE ESTABLISHED BIDIRECTIONAL THREE- PHASE INVERTER 4.1 Introduction 4.2 The Developed PLL-Based Synchronization Mechanism 4.2.1 The Developed PLL-Based Synchronization Mechanism 4.2.2 The Proposed Grid-Connected Operation 4.3 Experimental Performance Evaluation under Floating Mode 4.4 Experimental Performance Evaluation under Discharging Mode 4.5 Experimental Performance Evaluation under Charging Mode 4.5.1 Measure result without DC-microgrid 4.5.2 Measure result with DC-microgrid CHAPTER 5 DEVELOPMENT OF PLUG-IN THREE-PHASE AC/DC CONVERTER 5.1 Introduction 5.2 Establishment of Three-Phase Single-Switch SMR 5.2.1 Operation Principle 5.2.2 Design of Power Circuit 5.2.3 Design of Voltage Feedback Controller 5.2.4 Performance Evaluation 5.2.5 Effects of DC Output Voltage on Power Quality 5.3 Establishment of LLC Resonant DC/DC Converter 5.3.1 Operation Principle 5.3.2 Design of Power Circuit 5.3.3 Design of Voltage Feedback Controller 5.3.4 Performance Evaluation 5.4 Performance Evaluation of the Established Plug-in AC/DC Converter CHAPTER 6 CONCLUSIONS REFERENCES

    A. Distributed Power and Micro-grid Systems
    [1]D. Kundu, “An overview of the distributed generation (DG) connected to the GRID,” in Proc. IEEE ICPST, 2008, pp. 1-8.
    [2]F. Blaabjerg, R. Teodorescu, M. Liserre and A.V. Timbus, “Overview of control and grid synchronization for distributed power generation systems,” IEEE Trans. Ind. Electron., vol. 53, no. 5, pp. 1398-1409, 2006.
    [3]Y. Xue, L. Chang, S. B. Kjaer, J. Bordonau and T. Shimizu, “Topologies of single-phase inverters for small distributed power generators: an overview,” IEEE Trans. Power Electron., vol. 19, no. 5, pp. 1305-1314, 2004.
    [4]Y. Huang, F. Z. Peng, J. Wang and D. Yoo, “Survey of the power conditioning system for PV power generation,” in Proc. IEEE PESC, 2006, pp. 1-6.
    [5]G. Grandi, C. Rossi, D. Ostojic and D. Casadei, “A new multilevel conversion structure for grid-connected PV applications,” IEEE Trans. Ind. Electron., vol. 56, no. 11, pp. 4416-4426, 2009.
    [6]T. T. Ma, “Novel voltage stability constrained positive feedback anti-islanding algorithms for the inverter-based distributed generator systems,” IET Proc. Renew. Pow. Gen., vol. 4, no. 2, pp. 176-185, 2010.
    [7]Z. Liang, L. Alesi, X. Zhou and A. Q. Huang, “Digital controller development for grid-tied photovoltaic inverter with model based technique,” in Proc. IEEE APEC, 2010, pp. 849-853.
    [8]I. J. Balaguer, Q. Lei, S. Yang and U. Supatti and F. Z. Peng, “Control for grid-connected and intentional islanding operations of distributed power generation,” IEEE Trans. Ind. Electron., vol. 58, no. 1, pp. 147-157, 2011.
    [9]J.M. Guerrero, J.C. Vasquez, J. Matas, L. García de Vicuña and M. Castilla, “Hierarchical control of droop-controlled AC and DC microgrids-A general approach toward standardization,” IEEE Trans. Ind. Electron., vol. 58, no. 1, pp. 158-172, 2010.
    [10]R. H. Lasseter, “MicroGrids,” in Proc. IEEE PESW, 2002, vol. 1, pp. 305-308.
    [11]Y. W. Li, D. M. Vilathgamuwa and P. C. Loh, “A grid-interfacing power quality compensator for three-phase three-wire microgrid applications,” IEEE Trans. Power Electron., vol. 21, no. 4, pp. 1021-1031, 2006.
    [12]N. Hatziargyriou, H. Asano, R. Iravani and C. Marnay, “Microgids,” IEEE Power Energy Mag., vol. 5, no. 4, pp. 78-94, 2007.
    [13]P. Biczel, “Power electronic converters in DC microgrid,” in Proc. IEEE CPE, 2007, pp. 1-6.
    [14]S. Morozumi, “Micro-grid demonstration projects in Japan,” in Proc. IEEE PCCON, 2007, pp. 635-642.
    [15]H. Kakigano, Y. Miura, T. Ise and R. Uchida, “DC Micro-grid for super high quality distribution-system configuration and control of distributed generations and energy storage devices,” in Proc. IEEE PESC, 2006, pp. 1-7.
    [16]Y. C. Chang and C. M. Liaw, “Establishment of a switched-reluctance generator based common DC micro-grid system,” IEEE Trans. Power Electron., 2011, to be published.
    B. Inverter Basics
    [17]J. M. D. Murphy and F. G. Turnbull, Power Electronic Control of AC Motors, Pergamon Press, Oxford, 1988.
    [18]R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, 2nd ed. Massachusetts: SCI-TECH, 2001.
    [19]B. K. Bose, Modern Power Electronics and AC Drive, New Jersey: Prentice-Hall, 2002.
    [20]N. Mohan, T. M. Undeland and W. P. Robbins, Power Electronics: Converters, Applications and Design, New York: John Wiley & Sons, 2003.
    [21]M. H. Rashid, Power Electronics: Circuits, Devices and Applications, 3rd ed. New Jersey: Prentice-Hall, 2003.
    [22]P. J. M. Heskes and J. H. R. Enslin, “Power quality behavior of different photovoltaic inverter topologies,” in Proc. PCIM, 2003, pp. 1-5.
    C. PWM Switching Methods
    [23]D. G. Holmes and T. A. Lipo, Pulse Width Modulation for Power Converters: Principles and Practice, Hoboken, NJ: John Wiley, 2003.
    [24]J. Holtz, “Pulsewidth modulation: a survey,” IEEE Trans. Ind. Electron., vol. 39, no. 5, pp. 410-420, 1992.
    [25]M. P. Kazmierkowskzi and L. Malesani, “Current control techniques for three-phase voltage-source PWM converters: a survey,” IEEE Trans. Ind. Electron., vol. 45, no. 5, pp. 691-703, 1998.
    [26]C. M. Liaw, W. C. Yu and T. H. Chen, “Random vibration test control of inverter-fed electrodynamic shaker,” IEEE Trans. Ind. Electron., vol. 49, no. 3, pp. 587-594, 2002.
    [27]T. H. Chen and C. M. Liaw, “Vibration acceleration control of an inverter-fed electrodynamic shaker,” IEEE/ASME Trans. Mechatronics, vol. 4, no. 1, pp. 60-70, 1999.
    [28]T. Senjyu, H. Kamifurutono and K. Uezato, “Robust current control method with disturbance voltage observer for voltage source PWM inverter,” in Proc. IEEE PEDS, 1995, pp. 379-384.
    [29]E.R.C. da Silva, E. Cipriano dos Santos and C.B. Jacobina, “Pulsewidth modulation strategies,” IEEE Ind. Electron.. Mag., vol. 5, no. 2, pp. 37-45, 2011.
    [30]K. A. Tehrani, I. Rasoanarivo, L. Barrandon, M. Hamzaoui, F. M. Sargos and M. Rafiei, “A new current control using two hysteresis modulation for a new three-level inverter,” in Proc. IEEE OPTIM, 2010, pp. 652-658.
    [31]Y. Kobayashi and H. Funato, “Current control method based on hysteresis control suitable for single-phase active filter with LC output filter,” in Proc. EPE-PEMC, 2008, pp. 479-484.
    [32]B. J. Kang and C. M. Liaw, “Robust hysteresis current-controlled PWM scheme with fixed switching frequency,” IEE Proc. Elect. Power Appl., vol. 148, no. 6, pp. 503-512, 2001.
    [33]R. Ramchand, K. Sivakumar, A. Das, C. Patel and K. Gopakumar, “Improved switching frequency variation control of hysteresis controlled voltage source inverter-fed IM drives using current error space vector,” IET Proc. Power Elect., vol. 3, no. 2, pp. 219-231, 2010.
    [34]D. G. Holmes, R. Davoodnezhad and B. P. McGrath, “An improved three phase variable band hysteresis current regulator,” in Proc. IEEE ICPE & ECCE, 2011, pp. 2274-2281.
    [35]G. Alarcon, V. Cardenas, S. Ramirez, N. Visairo, C. Nunez, M. Oliver and H. Sira-Ramirez, “Nonlinear passive control with inductor current feedback for an UPS inverter,” in Proc. IEEE PESC, 2000, pp. 1414-1418.
    [36]K. M. Cho, W. S. Oh, Y. T. Kim and H. J. Kim, “A new switching strategy for pulse width modulation (PWM) power converters,” IEEE Trans. Ind. Electron., vol. 54, no. 1, pp. 330-337, 2007.
    [37]C. Rech, H. Pinherio, H. A. Grundling, H. L. Hey and J. Pinheiro, “Analysis and design of a repetitive predictive-PID controller for PWM inverters,” in Proc. IEEE PESC, 2001, vol. 2, pp. 17-21.
    [38]G. Narayanan, V. T. Ranganathan, D. Zhao, H. K. Krishnamurthy and R. Ayyanar, “Space vector based hybrid PWM techniques for reduced current ripple,” IEEE Trans. Ind. Electron., vol. 55, no. 4, pp. 1614-1627, 2008.
    [39]F. Barrero, M. R. Arahal, R. Gregor, S. Toral and M. J. Duran, “One-step modulation predictive current control method for the asymmetrical dual three-phase induction machine,” IEEE Trans. Ind. Electron., vol. 56, no. 6, pp. 1974-1983, 2009.
    [40]D. Czarkowski, D. V. Chudnovsky and I. W. Selesnick, “Solving the optimal PWM problem for single-phase inverters,” IEEE Trans. Circuits Syst. I, vol. 49, no. 4, pp. 465-475, 2002.
    [41]S. R. Bowes and D. Holliday, “Optimal regular-sampled PWM inverter control techniques,” IEEE Trans. Ind. Electron., vol. 54, no. 3, pp. 1547-1559, 2007.
    [42]V. Blasko, “A novel method for selective harmonic elimination in power electronic equipment,” IEEE Trans. Power Electron., vol. 22, no. 1, pp. 223-228, 2007.
    D. Effects of Dead Time and Output Filter
    [43]A. R. Munoz and T. A. Lipo, “On-line dead-time compensation technique for open-loop PWM-VSI drives,” IEEE Trans. Power Electron., vol. 14, no. 4, pp. 683-689, 1999.
    [44]A. C. Oliveira, A. M. N. Lima and C. B. Jacobina, “Varying the switching frequency to compensate the dead-time in pulse width modulated voltage source inverters,” in Proc. IEEE PSEC, 2001, pp. 244-249.
    [45]K. Iimori, K. Shinohara and K. Yamamoto, “Study of dead time of PWM rectifier of voltage-source inverter without DC-link components and its operating characteristics of induction motor,” IEEE Trans. Ind. Electron., vol. 42, no. 2, pp. 518-525, 2006.
    [46]A. C. Oliveira, C. B. Jacobina and A. M. N. Lima, “Improved dead-time compensation for sinusoidal PWM inverters operating at high switching frequencies,” IEEE Trans. Ind. Electron., vol. 54, no. 4, pp. 2295-2304, 2007.
    [47]S. H. Hwang and J. M. Kim, “Dead time compensation method for voltage-fed PWM inverter,” IEEE Trans. Energy Convers., vol. 25, no. 1, pp. 1-10, 2010.
    [48]X. Mao, R. Ayyanar and A.K. Jain, “Dead time effect in two-level space vector PWM voltage source inverters with large current ripple,” in Proc. IEEE APEC, 2011, pp. 679-684.
    [49]S. Ahmed, Z. Shen, P. Mattavelli, D. Boroyevich, M. Jaksic, K. Karimi and J. Fu, “Small-signal model of a voltage source inverter (VSI) considering the dead-time effect and space vector modulation types,” in Proc. IEEE APEC, 2011, pp. 685-690.
    [50]P. A. Dahono, A. Purwadi and Qamaruzzaman, “An LC filter design method for single-phase PWM inverters,” in Proc. IEEE PEDS, 1995, vol. 2, pp. 571-576.
    [51]J. Kim, J. Choi and H. Hong, “Output LC filter design of voltage source inverter considering the performance of controller,” in Proc. ICPST, 2000, vol. 3, pp. 1659-1664.
    [52]T. G. Habetler, R. Naik and T. A. Nondahl, “Design and implementation of an inverter output LC filter used for dv/dt reduction,” IEEE Trans. Power Electron., vol. 17, no. 3, pp. 327-331, 2002.
    E. DC-link Ripple and Transformer Imbalance
    [53]J. Sakly, P. Delarue and R. Bausiere, “Rejection of undesirable effects of input DC-voltage ripple in single-phase PWM inverters,” in Proc. IET EPA, 1993, vol. 4, pp. 65-70.
    [54]P. N. Enjeti and W. Shireen, “A new technique to reject DC-link voltage ripple for inverters operating on programmed PWM waveforms,” IEEE Trans. Power Electron., vol. 7, no. 1, pp. 65-70, 1993.
    [55]J. Sebasti, D. G. Lamar, M. M. Hernando, A. Rodriguez-Alonso and A. Fernandez, “Steady-state analysis and modeling of power factor correctors with appreciable voltage ripple in the output-voltage feedback loop to achieve fast transient response,” IEEE Trans. Power Electron., vol. 24, no. 11, pp. 2555-2566, 2009.
    [56]F. Blaabjerg, D. Neacsu and J.K. Pedersen, “Adaptive SVM to compensate DC-link voltage ripple for component minimized voltage source inverters,” in Proc. IEEE PESC, 1997, vol. 1, pp. 580-589.
    [57]J. Gao, X. Zhao, X. Yang and Z. Wang, “The research on avoiding flux imbalance in sinusoidal wave inverter,” in Proc. IEEE IPEMC, 2000, vol. 3, pp. 1122-1126.
    [58]M. Li and Y. Xing, “Digital voltage regulation with flux balance control for sine wave inverters,” in Proc. IEEE APEC, 2004, vol. 3, pp. 1709-1713.
    [59]H. Lavric and R. Fiser, “Flux balance assurance in output transformers of sine-wave inverters using DC autonulling control principle,” in Proc. EPE-PEMC, 2006, pp. 218-221.
    F. Three-Phase Inverters
    [60]C. Liu, J. Lai, F. C. Lee, D. Chen and R. Zhang, “Common-mode components comparison for different SVM schemes in three-phase four-legged converter,” in Proc. IEEE IPEMC, 2000, pp. 633-638.
    [61]N. Patin, E. Monmasson and J. P. Louis, “Fault tolerant control using a hybrid predictive strategy applied to a current controlled four-legged three-phase converter,” in Proc. IEEE IET, 2007, pp. 1-6.
    [62]T. Kominami and Y. Fujimoto, “A novel nine-switch inverter for independent control of two three-phase loads,” in Proc. IEEE IAS, 2007, pp. 2346-2350.
    [63]Y. Chen and K. Smedley, “Three-phase boost-type grid-connected inverter,” IEEE Trans. Power Electron., vol. 23, no. 5, pp. 2301-2309, 2008.
    [64]B. Koushki, H. Khalilinia, J. Ghaisari and M. S. Nejad, “A new three-phase boost inverter-topology and controller,” in Proc. IEEE CCECE, 2008, pp. 757-760.
    [65]B. Koushki and J. Ghaisari “A voltage reference design for three-phase boost inverter,” in Proc. IEEE EURCON, 2009, pp. 650-654.
    [66]A.M. Hava and N.O. Cetin, “A generalized scalar PWM approach with easy implementation features for three-phase, three-wire voltage-source inverters,” IEEE Trans. Power Electron., vol. 26, no. 5, pp. 1385-1395, 2011.
    [67]R. J. Kakalec, “A comparison of three phase Scott-T and ferroresonant transformers,” in Proc. IEEE EEIC, 1995, pp. 619-623.
    [68]M. Milanovic, D. Dolinar and A. Ravnjak, “DC to three-phase inverter based on two-phase to three-phase transformation,” in Proc. IEEE ISIE, 2002, pp. 784-788.
    [69]W. S. Chu and J. C. Gu, “A new hybrid SVC scheme with Scott transformer for balance improvement,” in Proc. IEEE RRCON, 2006, pp. 217-224.
    [70]A. A. Badin and I. Barbi, “Unity power factor isolated three-phase rectifier with split DC-bus based on the Scott transformer,” IEEE Trans. Power Electron., vol. 23, no. 3, pp. 1278-1287, 2008.
    G. Multi-level Inverters
    [71]N. P. Schibli, T. Nguyen and A. C. Rufer, “A three-phase multilevel converter for high-power induction motors,” IEEE Trans. Power Electron., vol. 13, no. 5, pp. 978-986, 1998.
    [72]J. Rodriguez, J. S. Lai and F. Z. Peng, “Multilevel inverters: a survey of topologies, controls and applications,” IEEE Trans. Ind. Electron., vol. 49, no. 4, pp. 724-738, 2002.
    [73]K. Fujii, U. Schwarzer, W. Rik and D. Doncker, “Comparison of hard-switched multi-level inverter topologies for STATCOM by loss-implemented simulation and cost estimation,” in Proc. IEEE PESC, 2005, pp. 340-346.
    [74]G. S. Perantzakis, F. H. Xepapas and S. N. Manias, “A novel four-level voltage source inverter-influence of switching strategies on the distribution of power losses,” IEEE Trans. Power Electron., vol. 22, no. 1, pp. 149-159, 2007.
    [75]D. Casadei, G. Grandi, A. Lega and C. Rossi, “Multilevel operation and input power balancing for a dual two-level inverter with insulated DC sources,” IEEE Trans. Ind. Appl., vol. 44, no. 6, pp. 1815-1824, 2008.
    [76]S. G. Song, D. K. Kim, H. K. Nam and S. J. Park, “Common arm three-phase transformer multi-level inverter,” in Proc. IEEE INTELEC, 2009, pp. 1-5.
    [77]Y. Ding, P. C. Loh, K. K. Tan, P. Wang and F. Gao, “Reliability evaluation of three-level inverters,” in Proc. IEEE APEC, 2010, pp. 1555-1560.
    [78]A. Shukla, A. Ghosh and A. Joshi, “Hysteresis modulation of multilevel inverters,” IEEE Trans. Power Electron., vol. 26, no. 5, pp. 1396-1409, 2011.
    H. Active power filters
    [79]M. Takeda, K. Ikeda, A. Teramoto and T. Aritssuka, “Harmonic current and reactive power compensation with an active filter,” in Proc. IEEE PESC, 1988, vol. 2, pp. 1174-1179.
    [80]R. S. Herrera, P. Salmeron and K. Hyosung, “Instantaneous reactive power theory applied to active power filter compensation different approaches, assessment, and experimental results,” IEEE Trans. Ind. Electron., vol. 55, no. 1, pp. 184-196, 2008.
    [81]S. Rahmani, N. Mendalek and K. Al-Haddad, “Experimental design of a nonlinear control technique for three-phase shunt active power filter,” IEEE Trans. Ind. Electron., vol. 57, no. 10, pp. 3364-3375, 2010.
    [82]M. Salo and S. Pettersson, “Current-source active power filter with an optimal DC current control,” in Proc. IEEE PESC, 2006, pp. 1-4.
    [83]B. Singh, K. Al-Haddad and A. Chandra, “A review of active filters for power quality improvement,” IEEE Trans. Ind. Electron., vol. 46, no. 5, pp. 960-971, 1999.
    [84]H. Akagi, “Trends in active power line conditioners,” IEEE Trans. Power Electron., vol. 9, no. 3, pp. 263-268, 1994.
    [85]V. Khadkikar, A. Chandra and B. Singh, “Digital signal processor implementation and performance evaluation of split capacitor, four-leg and three H-bridge-based three-phase four-wire shunt active filters,” IET Proc. Power Elect., vol. 4, no. 4, pp. 463-470, 2011.
    [86]S. Pettersson, M. Salo and H. Tuusa, “Optimal DC current control for four-wire current source active power filter,” in Proc. IEEE APEC, 2008, pp. 1163-1168.
    I. Switch-Mode Rectifiers
    [87]B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey and D. P. Kothari, “A review of single-phase improved power quality AC-DC converters,” IEEE Trans. Ind. Electron., vol. 50, no. 5, pp. 962-981, 2003.
    [88]P. Ide, N. Froehleke and H. Grotstollen, “Comparison of selected 3-phase switched mode rectifiers,” in Proc. IEEE INTELEC, 1997, pp. 630-636.
    [89]H. Mao, C. Y. Lee, D. Boroyevich and S. Hiti, “Review of high-performance three-phase power-factor correction circuits,” IEEE Trans. Ind. Electron., vol. 44, no. 4, pp. 437-446, 1997.
    [90]B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey and D. P. Kothari, “A review of three-phase improved power quality AC-DC converters,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 641-660, 2004.
    [91]J. Yungtaek and M. M. Jovanovic, “A comparative study of single-switch three-phase high-power-factor rectifiers,” IEEE Trans. Ind. Appl., vol. 34, no. 6, pp.1327-1334, 1998.
    [92]N. Takeuchi, K. Matsui, I. Yamamoto, M. Hasegawa, F. Ueda and H. Mori, “A novel PFC circuit for three-phase utilizing a single switching device,” in Proc. IEEE INTELEC, 2008, pp. 1-5.
    [93]J. W. Kolar, H. Ertl and F. C. Zach, “Design and experimental investigation of a three-phase high power density high efficiency unity power factor PWM (VIENNA) rectifier employing a novel integrated power semiconductor module,” in Proc. APEC, 1996, vol. 2, pp. 514-523.
    [94]N. B. H. Youssef, K. Al-Haddad and H. Y. Kanaan, “Implementation of a new linear control technique based on experimentally validated small-signal model of three-phase three-level boost-type Vienna rectifier,” IEEE Trans. Ind. Electron., vol. 55, no. 4, pp. 1666-1676, 2008.
    [95]Y. Jiang, H. Mao, F. C. Lee and D. Borojevic, “Simple high performance three-phase boost rectifiers,” in Proc. IEEE PESC, 1994, vol. 2, pp. 1158-1163.
    [96]A. B. Morton and I. M. Y. Mareels, “A generalized dynamical model for three-phase switch-mode converter circuits,” IEEE Trans. Power Electron., vol. 18, no. 4, pp. 994-1001, 2003.
    [97]T. Jin, L. Li and K. M. Smedley, “A universal vector controller for four-quadrant three-phase power converters,” IEEE Trans. Ind. Electron., vol. 54, no. 2, pp. 377-390, 2007.
    [98]R. Zhang, F. C. Lee and D. Boroyevich, “Four-legged three-phase PFC rectifier with fault tolerant capability,” in Proc. IEEE PESC, 2000, vol. 1, pp. 359-364.
    [99]R. Ghosh and G. Narayanan, “Control of three-phase, four-wire PWM rectifier,” IEEE Trans. Power Electron., vol. 23, no. 1, pp. 96-106, 2008.
    [100]S. H. Li and C. M. Liaw, “Development of three-phase switch mode rectifier using single-phase modules,” IEEE Trans. Aerosp. Electron. Syst., vol. 40, no. 1, pp. 70-79, 2004.
    [101]J. I. Itoh and I. Ashida, “A novel three-phase PFC rectifier using a harmonic current injection method,” IEEE Trans. Power Electron., vol. 23, no. 2, pp. 715-722, 2008.
    [102]D. S. L. Simonetti, J. Sebastian and J. Uceda, “Single-switch three-phase power factor preregulator under variable switching frequency and discontinuous input current,” in Proc. IEEE PESC, 1993, pp. 657-662.
    [103]K. Cai and Z. Xu, “A novel control method of three-phase single-switch boost power factor corrector under variable switching frequency,” in Proc. ICPST, 2002, vol. 1, pp. 565-569.
    [104]F. Barbosa, F. Canales, and F. Lee, “Passive input current ripple cancellation in three-phase discontinuous conduction mode rectifiers,” in Proc. IEEE PESC, 2001, vol. 2, pp. 1019-1024.
    [105]R. Zhang and F. C. Lee, “Optimum PWM pattern for a three-phase boost DCM PFC rectifier,” in Proc. IEEE APEC, 1997, vol. 2, pp. 895-901.
    [106]J. Y. Chai, Y. C. Chang and C. M. Liaw, “On the switched-reluctance motor drive with three-phase single-switch switch-mode rectifier front-end,” IEEE Trans. Power Electron., vol. 25, no. 5, pp. 1135-1148, 2010.
    [107]R. L. Alves and I. Barbi, “Analysis and implementation of a hybrid high-power-factor three-Phase unidirectional rectifier,” IEEE Trans. Power Electron., vol. 24, no. 3, pp. 632-640, 2009.
    [108]B. Tamyurek, A. Ceyhan, E. Birdane and F. Keles, “A simple DSP based control system design for a three-phase high power factor boost rectifier,” in Proc. IEEE APEC, 2008, pp. 1416-1422.
    [109]Z. Z. Ye and M. M. Jovanovic, “Implementation and performance evaluation of DSP-based control for constant-frequency discontinuous-conduction-mode boost PFC front end,” IEEE Trans. Ind. Electron., vol. 52, no. 1, pp. 98-107, 2005.
    [110]A. Gensior, H. Sira-Ramirez, J. Rudolph and H. Guldner, “On some nonlinear current controllers for three-phase boost rectifiers,” IEEE Trans. Ind. Electron., vol. 56, no. 2, pp. 360-370, 2009.
    [111]A. R. Prasad, P. D. Ziogas and S. Manias, “An active power factor correction technique for three-phase diode rectifiers,” IEEE Trans. Power Electron., vol. 6, no. 1 , pp. 83-92, 1991.
    J. High Frequency Isolated DC-Link
    [112]A. I. Pressman, Switching Power Supply Design, 2nd ed. New York: McGraw-Hill, 1999.
    [113]C. M. Liaw and T. H. Chen, “A soft-switching mode rectifier with power factor correction and high frequency transformer link,” IEEE Trans. Power Electron., vol. 15, no. 4, pp. 644-654, 2000.
    [114]J. A. Claassens and I. W. Hofsajer, “A flux balancer for phase shift ZVS DC-DC converters under transient conditions,” in Proc. APEC, 2006, pp. 523-527.
    [115]M. Z. Ramli, Z. Salam, L. S. Toh and C. L. Nge, “A bidirectional inverter with high frequency isolated transformer,” in Proc. IEEE PECon, 2003, pp. 71-75.
    [116]P. K. Jain, K. Wen, H. Soin and Y. Xi, “Analysis and design considerations of a load and line independent zero voltage switching full bridge DC/DC converter topology,” IEEE Trans. Power Electron., vol. 22, no. 5, pp. 649-657, 2002.
    [117]G. Koo, G. Moon and M. Youn, “New zero-voltage-switching phase-shift full-bridge converter with low conduction losses,” IEEE Trans. Ind. Electron., vol. 52, no. 1, pp. 228-235, 2005.
    [118]O. Deblecker, A. Moretti and F. Vallee, “Comparative study of soft-switched isolated DC-DC converters for auxiliary railway supply,” IEEE Trans. Power Electron., vol. 23, no. 5, pp. 2218-2229, 2008.
    [119]M. H. Kheraluwala, D. W. Novotny and D. M. Divan, “Design considerations for high power high frequency transformers,” in Proc. IEEE PESC, 1990, pp. 734-742.
    [120]R. Petkov, “Optimum design of a high-power, high-frequency transformer,” IEEE Trans. Power Electron., vol. 11, no. 1, pp. 33-42, 1996.
    [121]W. G. Hurley, W. H. Wolfle and J. G. Breslin, “Optimized transformer design: inclusive of high-frequency effects,” IEEE Trans. Power Electron., vol. 13, pp. 651-659, 1998.
    [122]T. Jimichi, H. Fujita and H. Akagi, “A dynamic voltage restorer equipped with a high-frequency isolated DC-DC converter,” IEEE Trans. Ind. Appl., vol. 47, no. 1, pp.169-175, 2011.
    [123]S. Inoue and H. Akagi, “A bidirectional isolated DC/DC converter as a core circuit of the next-generation medium-voltage power conversion system,” IEEE Trans. Power. Electron., vol. 22, no. 2, pp. 535-542, 2007.
    [124]Z. Wang and H. Li, “Unified modulation for three-phase current-fed bidirectional DC-DC converter under varied input voltage,” in Proc. IEEE APEC, 2010, pp. 807-812.
    [125]“Half-bridge LLC resonant converter design using FSFR-series Fairchild power switch,” Available: http://www.fairchildsemi.com/an/AN/AN-4151.pdf.
    [126]X. Li and A. K. S. Bhat, “Analysis and design of high-frequency isolated dual-bridge series resonant DC/DC converter,” IEEE Trans. Power Electron., vol. 25, no. 4, pp. 850-862, 2010.
    K. Others
    [127]F. Nekoogar and G. Moriarty, Digital Control Using Digital Signal Processing, New Jersey: Prentice Hall PTR, 1999.
    [128]F. L. Luo, H. Ye and M. H. Rashid, Digital Power Electronics and Applications, Academic Press Inc: London Ltd, 2005.
    [129]“Digital signal controller TMS320F2812 datasheet,” Available: http://focus.ti. com/lit/ds/symlink /tms320f2812.pdf
    [130]‘‘C28x IQmath Library-A Virtual Floating Point Engine,’’ Available: http://focus.ti. com/lit/sw /sprc990/sprc990.pdf
    [131]P. Kulkarni, “Assessing power quality impacts and solutions for the California food processing industry,” EPRI, California, Tech, Rep, 100-98-001, EPRI Project #37, 2005.
    [132]R. C. Dugan, M. F. McGranaghan, S. Santoso and H. W. Beaty, Electrical Power Systems Quality, 2nd ed., New York: McGraw-Hill, 2003.
    [133]A. Jouanne and B. Banerjee, “Assessment of voltage unbalance,” IEEE Trans. Power Del., vol. 16, no. 8, pp. 782-790, 2001.
    [134]Y. C. Chang, “Development of a switched-reluctance generator and its application to the establishment of microgrid system” Ph.D. Dissertation, Department of Electrical Engineering NTHU, Hsinchu, ROC, 2010.
    [135]AMOTECH Cut-cores for High Power Applications Data Manual, Advance Material on Technology Co., Korea, 2005.
    [136]C. H. Yeh, “DSP-based inverter systems with three-phase switch-mode rectifier front-end,” Master Thesis, Department of Electrical Engineering NTHU, Hsinchu, ROC, 2009.
    [137]J. Y. Huang, “Development of isolated three-phase inverter systems with switch mode rectifier front-ends,” Master Thesis, Department of Electrical Engineering NTHU, Hsinchu, ROC, 2010.
    [138]S. J. Chiang, “Design and implementation of multi-functional battery energy storage system,” Ph.D. Dissertation, Department of Electrical Engineering NTHU, Hsinchu, ROC, 1994.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE