簡易檢索 / 詳目顯示

研究生: 趙潤晶
Zhao, Run Jing
論文名稱: 干擾對齊技術應用於異質網絡下行鏈路多輸入多輸出正交多頻分工系統之研究
Interference Alignment for Downlink MIMO-OFDM Heterogeneous Networks
指導教授: 趙啟超
Chao, Chi-chao
口試委員: 蘇育德
邱茂清
林茂昭
趙啟超
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 69
中文關鍵詞: 干擾對齊異質網絡多輸入多輸出正交多頻分工
外文關鍵詞: Interference Alignment, Heterogeneous Network, MIMO, OFDM
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,人們對於無線通訊的需求越來越高。為了滿足新的要求,在4G的標準中,提出了異質網絡的新概念。通過在原有的通訊網路架構中添置新的低功耗,涵蓋範圍更小的微型基地台來改善網絡容量。但因為異質網絡共享同樣的頻帶,導致不同基站間相互的干擾增大。干擾對齊技術是新興的一種干擾管理技術,目前在異質網絡中的應用甚少。
    在本論文中,我們將干擾對齊技術應用於異質網絡下行鏈路多輸入多輸出正交多頻分工系統。 選用最新的IMT-A信道模型,針對於室內用戶的通訊情況來進行研究。利用模擬結果比較不同的干擾對齊技術的使用效果。以及針對異質網絡的特性,分析不同基站的傳輸功率對干擾對齊技術應用的影響。


    Recently, demands for cellular wireless communication have grown exponentially. To meet the requirements, a creative conception of heterogeneous networks (HetNets) deployment is proposed in the new standard of the fourth-generation (4G) communication era. HetNets deployment where low-power and small-coverage cells are distributed within the macrocell coverage improves the network capacity due to a better average link quality, more efficient usage of spectrum resources, and higher spatial reuse. Meanwhile, the coexistence of heterogeneous networks within the same spectrum also gives rise to more interference. However, there are very few works addressing interference alignment (IA) techniques for use in HetNets due to the di fferent properties between the macro base station and small cell base stations. In the thesis, we target our e fforts on applying di fferent IA schemes to the downlink multiple-input multiple-output (MIMO) orthogonal frequency-division multiplexing (OFDM) HetNets based on the realistic IMT-Advanced channel model, and focus on the coexistence between two tiers at the physical layer. From the comparisons, we fi nd that some of the algorithms can outperform others in diff erent regimes. And performances of di fferent initializations for iterative IA algorithms are discussed. It is observed that the optimal choice of initialization can improve the performance. Moreover, we try to analyze the impact of transmit power on diff erent IA algorithms.

    Chapter 1: Introduction Chapter 2: Channel Model Section 2.1: Overview of IMT-Advanced Channel Models Subsection 2.1.1: Pathloss Models Subsection 2.1.2: Generic Models Chapter 3: System Model Section 3.1: Heterogeneous Networks Section 3.2: MIMO-OFDM systems Chapter 4: Interference Alignment Algorithms Section 4.1: Close-Form Interference Alignment Section 4.2: Iterative interference Alignment Algorithm Section 4.3: Maximum Signal-to-Interference-Plus-Noise Ratio Algorithm Section 4.4: Minimum Projection Error Algorithm Chapter 5: Simulation Results Section 5.1: Simulation Environment Section 5.2: Performance Comparisons between Different Interference Alignment Algorithms Section 5.3: Performance Comparisons between Different Initializations for Iterative Algorithms Section 5.4: Effects of Heterogeneous Transmit Powers Chapter 6: Conclusion

    [1] \Evolved universal terrestrial radio access (E-UTRA); further advancements for EUTRA
    physical layer aspects," 3GPP Std. TR 36.814, 2010.
    [2] Recommendation ITU-R M.1645, \Framework and overall objectives of the future development
    of IMT-2000 and systems beyond IMT-2000," Tech. Rep., 2003.
    [3] H. Claussen, \Performance of macro- and co-channel femtocells in a hierarchical cell
    structure," in Proc. IEEE 18th Int. Symp. Personal, Indoor Mobile Radio Commun.,
    Athens, Greece, Sep. 2007, pp. 1{5.
    [4] V. Chandrasekhar, J. Andrews, and A. Gatherer, \Femtocell networks: A survey," IEEE
    Commun. Mag., vol. 46, no. 9, pp. 59{67, Sep. 2008.
    [5] A. Khandekar, N. Bhushan, J. Tingfang, and V. Vanghi, \LTE-advanced: Heterogeneous
    networks," in Proc. European Wireless Conf., Lucca, Italy, Apr. 2010, pp. 978{
    982.
    [6] N. Saquib, E. Hossain, L. B. Le, and D. I. Kim, \Interference management in OFDMA
    femtocell networks: Issues and approaches," IEEE Wireless Commun. Mag., vol. 19,
    no. 3, pp. 86{95, Jun. 2012.
    [7] A. Ghosh, N. Mangalvedhe, R. Ratasuk, B. Mondal, M. Cudak, E. Visotsky, T. A.
    Thomas, J. G. Andrews, P. Xia, H. S. Jo, H. S. Dhillon, and T. D. Novlan, \Heteroge-
    66
    neous cellular networks: From theory to practice," IEEE Commun. Mag., vol. 50, no. 6,
    pp. 54{64, Jun. 2012.
    [8] A. Damnjanovic, J. Montojo, Y. Wei, T. Ji, T. Luo, M. Vajapeyam, T. Yoo, O. Song,
    and D. Malladi, \A survey on 3GPP heterogeneous networks," IEEE Wireless Commun.
    Mag., vol. 18, no. 3, pp. 10{21, Jun. 2011.
    [9] Y.-S. Liang, W.-H. Chung, G.-K. Ni, I.-Y. Chen, H. Zhang, and S.-Y. Kuo, \Resource
    allocation with interference avoidance in OFDMA femtocell networks," IEEE Trans.
    Veh. Technol., vol. 61, no. 5, pp. 2243{2255, Jun. 2012.
    [10] M. Shirakabe, A. Morimoto, and N. Miki, \Performance evaluation of inter-cell interference
    coordination and cell range expansion in heterogeneous networks for LTE-advanced
    downlink," in Proc 8th Int. Symp. Wireless Commun. Syst., Aachen, Germany, Nov.
    2011, pp. 844{848.
    [11] D. Gesbert, S. Hanly, H. Huang, S. Shamai Shitz, O. Simeone, and W. Yu, \Multicell
    MIMO cooperative networks: A new look at interference," IEEE J. Sel. Areas
    Commun., vol. 28, no. 9, pp. 1380{1408, Dec. 2010.
    [12] V. R. Cadambe and S. A. Jafar, \Interference alignment and degrees of freedom of the
    K-user interference channel," IEEE Trans. Inf. Theory, vol. 54, no. 8, pp. 3425{3441,
    Aug. 2008.
    [13] S. W. Peters and R. W. Heath, \Interference alignment via alternating minimization,"
    in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., Taipei, Taiwan, Apr. 2009,
    pp. 2445{2448.
    67
    [14] K. Gomadam, V. R. Cadambe, and S. A. Jafar, \Approaching the capacity of wireless
    networks through distributed interference alignment," in Proc. IEEE Global Commun.
    Conf., New Orleans, LA, Nov. 2008, pp. 1{6.
    [15] ||, \A distributed numerical approach to interference alignment and applications to
    wireless interference networks," IEEE Trans. Inf. Theory, vol. 57, no. 6, pp. 3309{3322,
    Jun. 2011.
    [16] S. A. Jafar and M. J. Fakhereddin, \Degrees of freedom for the MIMO interference
    channel," IEEE Trans. Inf. Theory, vol. 53, no. 7, pp. 2637{2642, Jul. 2007.
    [17] O. El Ayach, S. W. Peters, and R. W. Heath, \The feasibility of interference alignment
    over measured MIMO-OFDM channels," IEEE Trans. Veh. Technol., vol. 59, no. 9, pp.
    4309{4321, Nov. 2010.
    [18] C. Suh, M. Ho, and D. N. C. Tse, \Downlink interference alignment," IEEE Trans.
    Commun., vol. 59, no. 9, pp. 2616{2626, Sep. 2011.
    [19] H. Huang and V. K. N. Lau, \Partial interference alignment for K-user MIMO interference
    channels," IEEE Trans. Signal Process., vol. 59, no. 10, pp. 4900{4908, Oct
    2011.
    [20] M. Maso, M. Debbah, and L. Vangelista, \A distributed approach to interference alignment
    in OFDM-based two-tiered networks," IEEE Trans. Veh. Technol., vol. 62, no. 5,
    pp. 1935{1949, Jun. 2013.
    [21] G. Liu, M. Sheng, X.Wang, Y. Li, and J. Li, \Joint interference alignment and avoidance
    for downlink heterogeneous networks," IEEE Commun. Lett., vol. 18, no. 8, pp. 1431{
    1434, Aug. 2014.
    68
    [22] G. Liu, M. Sheng, X. Wang, W. Jiao, Y. Li, and J. Li, \Interference alignment for
    partially connected downlink MIMO heterogeneous networks," IEEE Trans. Commun.,
    vol. 63, no. 2, pp. 551{564, Feb. 2015.
    [23] W. Shin, W. Noh, K. Jang, and H.-H. Choi, \Hierarchical interference alignment for
    downlink heterogeneous networks," IEEE Trans. Wireless Commun., vol. 11, no. 12,
    pp. 4549{4559, Dec. 2012.
    [24] IST-WINNER II Deliverable 1.1.2 v.1.2, \WINNER II channel models," IST-
    WINNER2, Tech. Rep., 2007.
    [25] S. W. Peters and R. W. Heath, \Cooperative algorithms for MIMO interference channels,"
    IEEE Trans. Veh. Technol., vol. 60, no. 1, pp. 206{218, Jan. 2011.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE