簡易檢索 / 詳目顯示

研究生: 蕭純芳
Hsiao, Chun-Fang
論文名稱: 以表面聲波研究奈米金屬顆粒陣列之表面電漿子光導電特性
Photoconductive Properties of Plasmonic Nanoparticle Arrays Studied by Surface Acoustic Wave Sensors
指導教授: 果尚志
Gwo, Shangjr
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 65
中文關鍵詞: 表面聲波表面電漿子奈米顆粒光導電
外文關鍵詞: surface acoustic wave, surface plasmon, nanoparticle, photo-conductance
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗引入表面聲波(Surface Acoustic Wave, SAW)偵測的新穎技術,研究金屬奈米顆粒陣列於入射電磁波作用下的光導電特性。電磁波作用在奈米金屬顆粒上,引發金屬奈米顆粒內部的自由電子產生集體性的表面電漿振盪,過程中激發自由電荷重新分布。此研究有利於深入了解表面電漿子主宰之電子傳輸機制;於應用層面,可設計由表面電漿機制主宰的光電元件,例如:光偵測器、光電開關…等。
    由於表面聲波對表面的變化極為靈敏,因此我們推測採用表面聲波技術將會比一般使用的電性I-V量測方式具有更靈敏的感測能力,企圖藉此以更有效率的方式進行奈米金屬顆粒陣列之光導電性偵測。
    實驗採用128oYcut鈮酸鋰壓電材料搭配線寬5μm的指叉電極作為表面聲波感測元件,共振頻率為189.5MHz;所偵測的奈米顆粒陣列分別為外部修飾十八碳鏈長的正十八硫醇(1-octadecanethiol)分子,粒徑約為6奈米的金、銀奈米顆粒緊密排列(Close-packed)陣列;另外也以非緊密排列(Random)的奈米顆粒陣列作為比較。研究結果顯示:
    1. 電性I-V量測以及表面聲波偵測結果皆顯示緊密排列銀奈米顆粒陣列相對於緊密排列金奈米顆粒陣列具有較佳的光導電度,且兩者光導電度與光強度呈線性關係。
    2. 採用表面聲波偵測技術相對於電性I-V量測,有較佳的偵測力(訊雜比高約8至20倍)。
    3. 觀察不同入射波長之光導電度,發現其趨勢和表面電漿吸收光譜極為一致,故可以此建立一由表面電漿機制所主宰的光導電模型。


    摘要 i 誌謝 ii 目錄 iii 圖目錄 v 表目錄 viii 第一章 前言 1 1.1 表面電漿子 1 1.2 表面聲波 6 1.3 研究動機 7 1.4 相關研究 9 第二章 原理 12 2.1 表面電漿子 12 2.2 表面聲波 14 2.2.1 何謂表面聲波 14 2.2.2 壓電效應 14 2.2.3 表面聲波激發機制 17 2.2.4 表面聲波感測機制 18 第三章 材料及實驗 21 3.1 非緊密排列奈米金屬顆粒吸附 21 3.1.1 6 nm奈米顆粒水溶液的製備方法 21 3.1.2 利用電性吸附方式製備奈米顆粒陣列結構 22 3.2 緊密排列奈米金屬顆粒陣列吸附 25 3.2.1 硫醇修飾之膠體6 nm奈米顆粒溶液的製備方法 25 3.2.2 利用自組裝方法製備奈米顆粒陣列超晶格結構 26 3.3 表面聲波元件製程 29 3.4 表面聲波量測實驗架設 31 3.4.1 表面聲波元件之選用 32 3.4.2 實驗架設-Dual Channel 34 第四章 實驗結果分析與討論 35 4.1 奈米顆粒陣列之表面電漿子光學特性 35 4.2 以傳統I-V電性方法量測奈米顆粒陣列之光導電特性 38 4.2.1 電流-電壓(I-V)電性量測 38 4.2.2 光導電度之I-V量測 39 4.3 以表面聲波技術量測奈米顆粒陣列之光導電特性 41 4.3.1 奈米顆粒陣列光導電性比較 41 4.3.2 鈮酸鋰的光折射效應 48 4.3.3 奈米顆粒陣列之光導電性及照光強度之關聯性 49 4.3.4 奈米顆粒陣列之光導電性及光波長之關聯性 52 4.4 傳統I-V量測和表面聲波感測之比較 56 第五章 結論與未來展望 59 參考文獻 61

    【1】 Harden D.B. and Toynbee J.M.C., “The Rothschild Lycurgus Cup”, Archaeologia, 97, pp. 179 (1959).
    【2】 R. W. Wood, “On remarkable case of uneven distribution of light in a diffraction grating spectrum”, Philos. Mag., 4, pp. 396 (1902).
    【3】 U. Fano, “The Theory of Anomalous Diffraction Gratings and of Quasi-Stationary Waves on Metallic Surfaces (Sommerfeld’s Waves)”, J. Opt. Soc. Am., 31, pp. 213 (1941).
    【4】 A. Hessel and A. A. Oliner, “Anew theory of Wood’s anomalies on optical gratings”, Appl. Opt., 4, pp. 1275 (1965).
    【5】 T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, ” Extraordinary optical transmission through sub-wavelength hole arrays“, Nature, 391, pp. 667 (1998).
    【6】 W. C. Tan, T. W. Preist, J. R. Sambles, and N. P. Wanstall, “Flat surface-plasmon-polariton bands and resonant optical absorption on short-pitch metal gratings”, Phys. Rev. B , 59, pp. 12661 (1998).
    【7】 J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission Resonances on Metallic Gratings with Very Narrow Slits“, Phys. Rev. Lett., 83, pp. 2845 (1999).
    【8】 W. C. Tan, T. W. Preist, and R. J. Sambles, “Resonant tunneling of light through thin metal films via strongly localized surface plasmons“, Phys. Rev. B , 62, pp. 11134 (2000).
    【9】 L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays“, Phys. Rev. Lett. , 86, pp. 1114 (2001).
    【10】 Wei-Chih Liu and Din Ping Tsai, “Optical tunneling effect of surface plasmon polaritons and localized surface plasmon resonance“, Phys. Rev. B, 65, pp. 155423 (2002).
    【11】 G. Mie, “Beitrage zur Optik truber Medien, speziell Kolloidaler Metallosungen”, Ann. Phys. 330, pp. 377 (1908).
    【12】 Lu Qiang, Gan Xiaosong, Gu Min, and Luo Qingming, “Monte Carlo modeling of optical coherence tomography imaging through turbid media”, Applied Optics, 43, pp. 1628 (2004).
    【13】 K. Lance Kelly, Eduardo Coronado, Lin Lin Zhao, and George C. Schatz, The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment”, J. Phys. Chem. B, 107, pp. 668 (2003).
    【14】 Stephan Link and Mostafa A. El-Sayed, “Size and Temperature Dependence of the Plasmon Absorption of Colloidal Gold Nanoparticles”, J. Phys. Chem. B, 103, pp. 4212 (1999).
    【15】 Sylvia Underwood, Paul Mulvaney,” Effect of the Solution Refractive Index on the Color of Gold Colloids“, Langmuir, 103, pp. 4212 (1999).
    【16】 Susie Eustis and Mostafa A. El-Sayed, ” Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes”, Chem. Soc. Rev., 35, pp.209-217(2006)
    【17】 Faraday, Michael, "The Bakerian Lecture: Experimental Relations of Gold (and other Metals) to Light.", Philosophical Transactions of the Royal Society, 147 Part I, pp. 145 (1857).
    【18】 M.-C. Daniel and D. Astruc, ” Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology“, Chem. Rev., 104, pp. 293 (2004).
    【19】 C. J. Murphy, T. K. Sau, A. M. Gole, C. J. G. Orendorff, J. L. Gou,S. E. Hunyadi and T. Li, “Anisotropic Metal Nanoparticles: Synthesis, Assembly, and Optical Applications“, J. Phys. Chem. B, 109, pp. 13857–13870 (2005).
    【20】 C. Jin, Y. W. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz and J. G. Zheng, “Photoinduced Conversion of Silver Nanospheres to Nanoprisms”, Science, 294, pp.1901 (2001).
    【21】 W. L.Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics”, Nature, 424, 824 (2003)
    【22】 Lord Rayleigh, “On waves propagated along the plane surface of an elastic solid”, Proc. London Math. Soc., 17, pp. 4 (1885).
    【23】 . M. White and F. W. Voltmer, “Direct piezoelectric coupling to surface elastic waves”, Appl. Phys. Lett., 7, pp. 314 (1965).
    【24】 Ming-Shien Hu, Hsin-Li Chen, Ching-Hsing Shen, Lu-Sheng Hong, ohr-Ran Huang, Kuei-Hsien Chen and Li-Chyong Chen, ” Photosensitive gold-nanoparticle-embedded dielectric nanowires”, Nature Mate. , Vol. 5, pp. 102 (2006).
    【25】 M. A. Mangold, C. Weiss, M. Calame, and A. W. Holleitner,” surface plasmon enhanced photoconductance of gold nanoparticle arrays with incorporated alkane linkers”, Appl. Phys. Lett., 94, 161104 (2009)
    【26】 Nakanishi, H; Bishop, KJM; Kowalczyk, B, et al, “Photoconductance and inverse photoconductance in films of functionalized metal nanoparticles”, Nature, 460, pp. 371 (2009).
    【27】 Son MS, Im JE, and Wang KK et al.,” Surface plasmon enhanced photoconductance and single electron effects in mesoporous titania nanofibers loaded with gold nanoparticles”, Appl. Phys. Lett., 96, 023115 (2010).
    【28】 Xie XN, Xie YL, and Wee ATS et al.,”Metallic nanoparticle network for photocurrent generation and photodetection”, Adv. Mater., 21, pp. 3016 (2009).
    【29】 E. Hutter and J. H. Fendler,”Exploitation of Localized Surface Plasmon Resonance”, Adv. Mater., 16, pp. 1685 (2004).
    【30】 邱國斌,蔡定平, “金屬表面電漿簡介”,物理雙月刊, 28卷2期, pp. 472 (2006)
    【31】 楊啟榮,”表面聲波生化感測器原理與應用技術”台灣師範大學機電科技 學系
    【32】 C. K. Campbell,“Chapter 2:Basic of piezoelectricity and acoustic waves”, Surface acoustic wave devices for mobile and wireless communication, (1998).
    【33】 Ballantine, David Stephen, “Acoustic wave sensors : theory, design, and physico-chemical applications”, (1996).
    【34】 Chen CF, Tzeng SD, and Chen HY, et al. “Tunable plasmonic response from alkanethiolate-stabilized gold nanoparticle superlattices: Evidence of near-field coupling“, JACS, 130, 824 (2008).
    【35】 J. W. Slot and H. J. Geuze, European” A new method of preparing gold probes for multiple-labeling cytochemistry“, Eur. J. Cell Biol., 38, pp. 87 (1985).
    【36】 楊長沂,”利用表面聲波元件研究自組裝單分子層上奈米金顆粒之吸附”,(2005)
    【37】 Junke Tang, Huilin Rong, Xinchang Li, Bingsuo Zou, and Jinru Li, ”The photoelectric response of gold-nanoparticle monolayers”, Chem. Phys. Chem., 8, pp. 1611 (2007).
    【38】 http://www.newport.com/

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE