研究生: |
詹宏偉 Hong-Wei Chan |
---|---|
論文名稱: |
鋰離子二次電池中鋰錳氧正極材料之表面改質 Surface Modification of LiMn2O4 Cathode Material in Li-ion Secondary Battery |
指導教授: |
杜正恭
Jenq-Gong Duh |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2006 |
畢業學年度: | 95 |
語文別: | 英文 |
論文頁數: | 212 |
中文關鍵詞: | 鋰錳氧 、表面改質 、鋰電池 |
外文關鍵詞: | LiMn2O4, Surface Modification, Li-ion Battery |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在鋰離子電池之鋰錳氧正極材料中,一般研究皆著重於降低尖晶石相鋰錳氧的電容衰退率以提高其電性表現,特別是在高電流密度下的表現。相較於其他正極材料,鋰錳氧正極材料具有低成本,環保以及安全性高的特點。利用正極材料表面改質的技術,可用於抑制電極及電解液之間的反應。
本論文將針對表面改質的鋰錳氧正極材料做做微結構及電性的分析。藉由固態法或化學溶液法鍍覆鋰硼氧化物以及鋰銅錳氧化物至鋰錳氧的表面。根據場發射掃描式電子顯微鏡的觀察,前述兩種材料的每一顆粉末都是由數百奈米的小粉末所組成。透過高解析穿透式電子顯微鏡更進一步的觀察,可以證實鋰硼氧化物以及鋰銅錳氧化物兩種表面改質的形式係為兩種不同的形態。此外,藉由高解析穿透式電子顯微鏡的的分析,可以得知在鋰銅錳氧化物鍍覆的尖晶石鋰錳氧正極材料中,銅是佔在16d的位置。
另外電性方面的量測是採用兩極式的鈕扣電池。首先,表面改質技術確實可以抑制電容量的衰退。以市售鋰錳氧km110,經0.4 wt%的鋰硼氧鍍覆量在經過10圈的充放電後,仍可維持93%的初始電容量。而鋰硼氧鍍覆量為0.3 wt%的鋰錳氧正極材料經過20圈的充放電測試後,只損失了7%的初始電容量,比未經表面改質的鋰錳氧的15%要低的很多。在經過鋰硼氧鍍覆後,其阻抗值亦比未鍍覆的鋰錳氧小,可以推論其原因為電極與電解液界面間的反應減緩而使阻抗縮小。此外,經過鋰銅錳氧的鍍覆之後,表面改質的鋰錳氧正極材料的電容量率退率在0.2C電流速率下充放電10圈,較未改質的鋰錳氧可減少2.25%。在更高的0.5C電流速率下充放電25圈後,其電容量衰退率更可減少5.16%。
經鋰銅錳氧鍍覆以及未經鍍覆的鋰錳氧,在0.1C,0.5C和1C等不同電流速率下於電壓3到4.5伏特間充放電之相變化可藉由同步輻射之繞射光譜來鑑定。結果顯示,未經鍍覆及鋰銅錳氧鍍覆之鋰錳氧的電位平台之電位差為50mV。其原因為經鋰銅錳氧表面改質後,鋰錳氧的內部傳導速率提高所致。從吸收光譜的分析中,可以得知在鋰銅錳氧鍍覆之鋰錳氧尖晶石結構裡面,銅與錳的價數分別較為接近正二價及正四價。在充放電過程中,其錳價數的增加(鋰遷出)及減少(鋰遷入)為可逆程序。錳-氧鍵結及錳-錳(或銅)鍵結在充放電過程中的變化趨勢亦與價數變化的趨勢符合,係為一可逆程序,其中隨著鋰遷出尖晶石結構其鍵結隨之縮短,反之則鍵結隨之拉長。藉由吸收光譜的分析,亦可證實透過表面改質技術,尖晶石相中之錳會偏向正四價,進一步抑制了楊泰勒晶格收縮(Jahn-Teller distortion),而達到改善電性表現的良好結果。
The surface-modified cathode material in Li-ion battery was synthesized to decrease the side reactions at the interface between the cathode electrode and electrolyte. Among all cathode materials, LiMn2O4 exhibits lower cost, acceptable environmental characteristics and better safety property than other cathode materials. The research focus is aimed to reduce the capacity fading and to enhance the electrochemical performance of spinel LiMn2O4, particularly at high C rate.
In this study, the microstructure and electrochemical property in the surface-modified LiMn2O4 were examined and probed. The Li2O-2B2O3 (LBO)-coated LiMn2O4 and LiCuxMn2-xO4-coated LiMn2O4 were synthesized by either solid-state method or chemical solution method. From the cross section view of LiCuxMn2-xO4-coated LiMn2O4 and LBO-coated LiMn2O4 observed with FE-SEM, it was demonstrated that the lager particles consisted of many smaller ones in the sub-micrometer range. It was argued that LiCuxMn2-xO4-coated LiMn2O4 and LBO-coated LiMn2O4 exhibited two distinct types of surface modification on the basis of the detailed analysis of HRTEM. In addition, the location of Cu in spinel LiCuxMn2-xO4-coated LiMn2O4 was at 16d site revealed by HRTEM.
In addition, the electrochemical behavior was examined by using two-electrode coin cells. First of all, the capacity fading can be reduced by the technique of surface modification. The 0.4 wt% LBO-coated km110 powder retained 93% of its original discharge capacity after 10 cycles. Furthermore, the capacity fading of 0.3 wt% LBO-coated Li1+xMn2O4 cathode material was 7% after 20 cycles, showing much better cycleability than the un-coated one of 15%. The resistance of the LBO-coated Li1+xMn2O4 was also smaller than the un-coated one, indicating that the side reaction at the interface between the cathode and electrode could be diminished. Besides, for the LiCuxMn2-xO4-coated LiMn2O4, the fading rate of LiMn2O4 at 0.2 C was reduced 2.25% after 10 cycles by surface modification. At higher C rate of 0.5 C, the decrease of fading rate was more obvious at 5.16% after 25 cycles.
The phase transformation of both base LiMn2O4 and LiCuxMn2-xO4-coated LiMn2O4 during charging at 0.1 C, 0.5 C and 1C rate from 3 V to 4.5 V was confirmed by the in situ synchrotron X-ray diffractometer (in situ XRD). The plateau potential difference between the base LiMn2O4 and LiCuxMn2-xO4-coated LiMn2O4 composite was 50 mV. The decrease of the plateau can be related to the fact that the kinetics of the LiCuxMn2-xO4-coated LiMn2O4 composite cathode material was faster than that of the uncoated material. The XANES of Cu and Mn K-edge spectrum for LiCuxMn2-xO4-coated LiMn2O4 showed that the valence of Cu and Mn was close to Cu2+ and Mn4+, respectively. Furthermore, the oxidation state of Mn was reversibly increased and decreased during charge. The EXAFS was further revealed that the trend of the variation for the bonding length of Mn-O and Mn-M (M=Mn or Cu) was in agreement with the oxidation state of Mn, which was decreased with Li deintercalation, while increased with Li intercalation during cycling. On the basis of the in situ XAS data, it was evidenced that Mn transferred toward Mn4+ to minimize the Jahn-Teller distortion by the technique of surface modification, and thus the better electrochemical property was achieved.
1. K. Mizushima, P. C. Jones, P. J. Wiseman, and J. B. Goodenough, “LixCoO2 (0 < x ≤ 1): A new cathode material for batteries of high energy density,” Mater. Res. Bull., 15 (1980) 783-789.
2. J. R. Dahn, U. von Sacken, M. R. Juzkow, and H. Al-Janaby, “Rechargeable LiNiO2/Carbon Cells,” J. Electrochem. Soc., 138 (1991) 2207-2211.
3. T. Ohzuku, A. Ueda, M. Nagayama, Y. Iwakoshi, and H. Komori, “Comparative study of LiCoO2, LiNi1/2Co1/2O2 and LiNiO2 for 4 volt secondary lithium cells,” Electrochim. Acta, 38 [9] (1993) 1159-1167.
4. A. K. Padhi, K. S. Nanjundaswamy, and J. B. Goodenough, “Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries,” J. Electrochem. Soc., 144 (1997) 1188-1194.
5. A. Yamada, Y. Kudo, and K. Y. Liu, “Reaction Mechanism of the Olivine-Type Lix(Mn0.6Fe0.4)PO4 (0 ≤ x ≤ 1),” J. Electrochem. Soc., 148 (2001) A747-A754.
6. G. T. K. Fey, K. S. Wang, and S. M. Yang, “New inverse spinel cathode materials for rechargeable lithium batteries,” J. Power Sources, 68 (1997) 159-165.
7. M. M. Thackeray, P. J. Johnson, L. A. De Picciotto, P. G. Bruce, and J. B. Goodenough, “Electrochemical Extraction of Lithium from LiMn2O4,” Mater. Res. Bull., 19 (1984) 179-187.
8. D. Guyomard and J.-M. Tarascon, “Li Metal-Free Rechargeable LiMn2O4/Carbon Cells: Their Understanding and Optimization,” J. Electrochem. Soc., 139 (1992) 937-948.
9. J. M. Tarascon, W. R. McKinnon, F. Coowar, T. N. Bowner, G. Amatucci, and D. Guyomard, “Synthesis Conditions and Oxygen Stoichiometry Effects on Li Insertion into the Spinel LiMn2O4,” J. Electrochem. Soc., 141 (1994) 1421-1431.
10. A. D. Robertson, S. H. Lu, W. F. Averill, and W.F. Howard Jr., “M3+-Modified LiMn2O4 Spinel Intercalation Cathodes,” J. Electrochem. Soc., 144 (1997) 3500-3512.
11. H. W. Chan, J. G. Duh, and S. R. Sheen, “LiMn2O4 cathode doped with excess lithium and synthesized by co-precipitation for Li-ion batteries,” J. Power Sources, 115 (2003) 110-118.
12. P. Arora, R. E. White, and M. Doyle, “Capacity Fade Mechanisms and Side Reactions in Lithium-Ion Batteries,” J. Electrochem. Soc., 145 (1998) 3647-3667.
13. Y. J. Kim, J. Cho, T. J. Kim, and B. Park, “Suppression of Cobalt Dissolution from the LiCoO2 Cathodes with Various Metal-Oxide Coatings,” J. Electrochem. Soc., 150 (2003) A1723-A1725.
14. M. M. Thackeray, C. S. Johnson, J. S. Kim, K. C. Lauzze, J. T. Vaughey, N. Dietz, D. Abraham, S. A. Hackney, W. Zeltner, and M. A. Anderson, “ZrO2- and Li2ZrO3-stabilized spinel and layered electrodes for lithium batteries,” Electrochem. Commun., 5 (2003) 752-758.
15. S. S. Zhang, K. Xu, and T.R. Jow, “Effect of Li2CO3-coating on the performance of natural graphite in Li-ion battery” Electrochem. Commun., 5 (2003) 979-982.
16. C. Arbizzani, A. Balducci, M. Mastragostino, M. Rossi, and F. Soavi, “Li1.01Mn1.97O4 surface modification by poly (3,4- ethylenedioxythiophene),” J. Power Sources, 119 (2003) 695-700.
17. J. Cho, “Dependence of AlPO4 coating thickness on overcharge behaviour of LiCoO2 cathode material at 1 and 2 C rates,” J. Power Sources, 126 (2004) 186-189.
18. B. Kim, J. G. Lee, M. Choi, J. Cho, and B. Park, “Correlation between local strain and cycle-life performance of AlPO4-coated LiCoO2 cathodes,” J. Power Sources, 126 (2004) 190-192.
19. J. Hajek, French Patent, 8 (1949) 10.
20. A. Yamada, M. Tanaka, K. Tanaka, and K. Sekai, “Jahn–Teller instability in spinel Li–Mn–O,” J. Power Sources, 82 (1999) 73-78.
21. J. M. Tarascon and M. Armand, “Issues and challenges facing rechargeable lithium batteries,” Nature, 414 (2001) 359-367.
22. K. A. Klinedinst, U. S. Patent No. 4,176,214 (1979).
23. A. A. Schneider, U. S. Patent No. 4,010,043 (1972).
24. M. S. Whittingham, Science, 192 (1976) 1126-1128.
25. J. M. Amarilla, J. L. M. de Vidales, and R. M. Rojas, “Electrochemical characteristics of cobalt-doped LiCoyMn2-yO4 (0 ≤ y ≤ 0.66) spinels synthesized at low temperature from CoxMn3-xO4 precursors,” Solid State Ionics, 127 (2000) 73-81.
26. M. S. Whittingham, U. S. Patent No. 4,049,887 (1977).
27. K. Brandt, “A 65-AH Rechargeable Lithium Molybdemun-Disulfide Battery,” J. Power Sources, 18 (2-3) (1986) 117-125.
28. Y. Sakurai, U. S. Patent No. 4,675,260 (1987).
29. M. S. Whittingham and M. B. Dines, “n-Butyllithium—An Effective, General Cathode Screening Agent,” J. Electrochem. Soc., 124 (1977) 1387-1388.
30. E. Pled, “The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems—The Solid Electrolyte Interphase Model,” J. Electrochem. Soc., 126 (1979) 2047-2051.
31. V. R. Koch, J. L. Goldman, C. J. Mattos, and M. Mulvaney, “Specular Lithium Deposits from Lithium Hexafluoroarsenate/Diethyl Ether Electrolytes,” J. Electrochem. Soc., 129 (1982) 1-4.
32. D. Aurbach, Y. Gofer, and J. Langzam, “The Correlation Between Surface Chemistry, Surface Morphology, and Cycling Efficiency of Lithium Electrodes in a Few Polar Aprotic Systems,” J. Electrochem. Soc., 136 (1989) 3198-3205.
33. B. Scrosati, Lithium Polymer Batteries, Chapman & Hall, Inc., London (1993) 212.
34. M. Armand, Materials for Advanced Batteries, Plenum Press, New York (1980) 145.
35. R. Bittihn, R. Heer, and D. Hoge, “The Swing System, A Nonaqueous Rechargeable Carbon Metal-Oxide Cell,” J. Power Sources, 43 (1993) 223-231.
36. H. J. Orman and P. J. Wiseman, “Cobalt(III) Lithium Oxide, CoLiO2: Structure Refinement by Powder Neutron Diffraction,” Acta. Cryst., 40 (1984) 12-14.
37. E. Plichta, M. Salomon, S. Slane, M. Uchiyama, D. Chua, W. B. Ebner, and H. W. Lin, “A Rechargeable Li/LixCoO2 Cell,” J. Power Sources, 21 (1987) 25-31.
38. J. Molenda, A. Stoklosa, and T. Bak, “Modification in the Electronic-structure of Cobalt Bronze LixCoO2 and the Resulting Electrochemical Properties,” Solid State Ionics, 36 (1989) 53-58.
39. T. Nagaura and K. Tozawa, “Lithium-ion rechargeable battery,” Prog. Batt. Solar Cells, 9 (1990) 209-217.
40. J. Morales, C. Peraz-Vicente, and J. L. Tirado, “Cation Distribution and Chemical Deintercalation of Li1-XNi1+XO2,” Mat. Res. Bull., 25 (1990) 623-630.
41. J. R. Dahn, U. von Sacken, M. W. Jazkow, and H. Al-Janaby, “Rechargeable LiNiO2/Carbon Cells,” J. Electrochem. Soc., 138 (1991) 2207-2211.
42. G. T. K. Fey, “New high voltage cathode materials for rechargeable lithium batteries”, Active and Passive Electronic Components, 18 (1995) 11-26.
43. C. Delmas, M. Menetrier, L. Croguennec, S. Levasseur, J. P. Peres, C. Pouillere, G. Prado, L. Fournès, and F. Weill “Lithium batteries: a new tool in solid state chemistry,” Int. J. Inorg. Mater, 1 (1999) 11-19.
44. W. Liu, G. C. Farrington, F. Chaput, and B. Dunn, “Synthesis and Electrochemical Studies of Spinel Phase LiMn2O4 Cathode Materials Prepared by the Pechini Process,” J. Electrochem. Soc., 143 (1996) 879-884.
45. J. M. Tarascon and D. Guyomard , “The Li1+xMn2O4/C rocking-chair system: a review,” Electrochimica Acta, 9 (1993) 1221-1231.
46. X. Qiu, X. Sun, W. Shen, and N. Chen, “Spinel Li1+xMn2O4 synthesized by coprecipitation as cathodes for lithium-ion batteries,” Solid State Ionics, 93 (1997) 335-339.
47. M. M. Thackeray, W. I. F. David, and J. B. Goodenough, “High-temperature Lithiation of Fe2O3 - A Mechanistic Study,” J. Solid State Chem., 55 (1984) 280-286.
48. L. A. Picciotto and M. M. Thackeray, “Lithium Insertion into the Spinel LiFe5O8,” Mat. Res. Bull., 21 (1986) 583-592.
49. I. A. Courtney and J. R. Dahn, “Electrochemical and In Situ X-Ray Diffraction Studies of the Reaction of Lithium with Tin Oxide Composites,” J. Electrochem. Soc., 144 (1997) 2045-2052.
50. W. F. Liu, X. J. Huang, Z. X. Wang, H. Li, and L. Q. Chen, “Studies of Stannic Oxide as an Anode Material for Lithium-Ion Batteries,” J. Electrochem. Soc., 145 (1998) 59-62.
51. H. Li., X. Huang, and L. Chen, “Anode Based on Oxide Materials for Lithium Rechargeable Batteries,” Solid State Ionics, 123 (1999) 189-197.
52. H. Huang, E.M. Kelder, L. Chen, and J. Schoonman, “Electrochemical characteristics of Sn1-xSiO2 as anode for lithium-ion batteries,” J. Power Sources, 81-82 (1999) 362-367.
53. J. Yang, Y. Takeda, N. Imanishi, C. Capiglia, J.Y. Xie, and O. Yamamoto, “SiOx-based anodes for secondary lithium batteries,” Solid State Ionics, 152-153 (2002) 125-129.
54. W. Weppner and R. A. Huggins, “Thermodynamic Properties of Intermetallic Systems Lithium-Antimony and Lithium-Bismuth,” J. Electrochem. Soc., 125 (1978) 7-14.
55. M. L. Saboungi, J. J. Marr, K. Anderson, and D. R. Vissers, “Thermodynamic Analyses of the Intermetallic Compounds in the Lithium-Lead System,” J. Electrochem. Soc., 126 (8) (1979) C322-C322.
56. C. J. Wen and R. A. Huggins, “Thermodynamic Study of the Lithium-Tin System,” J. Electrochem. Soc., 128 (1981) 1181-1187.
57. J. Wang, P. King, and R. A. Huggins, “Investigation of Binary Lithium-Zinc, Lithium-Cadmium and Lithium-Lead Alloys as Negative electrodes in Organic Solvent-based Electrolyte,” Solid State Ionics, 20 (1986) 185-189.
58. W. J. Weydanz, M. Wohlfahrt-Mehrens, and R. A. Huggins, “A Room Temperature Study of the Binary Lithium–Silicon and the Ternary Lithium–Chromium–Silicon System for Use in Rechargeable Lithium Batteries,” J. Power Sources, 81-82 (1999) 237-242.
59. J. Yang, M. Wachtler, M. Winter, and J. O. Bensenhard e, ”Sub-Microcrystalline Sn and Sn-SnSb Powders as Lithium Storage Materials for Lithium-Ion Batteries,” Electrochem. Solid-State Lett., 2 (4) (1999) 161-163.
60. G. X. Wang, L. Sun, D.H. Bradhurst, S. Zhong, S.X. Dou, and H.K. Liu, “Innovative Nanosize Lithium Storage Alloys with Silica as Active Centre,” J. Power Sources, 88 (2000) 278-281.
61. T. D. Hatchard and J. R. Dahn, “In Situ XRD and Electrochemical Study of the Reaciton of Lithium with Amorphous Silicon,” J. Electrochem. Soc., 151 (6) (2004) A838-A842.
62. M. N. Obrovac and Leif Christensen, “Structural Changes in Silicon Anodes during Lithium Insertion/Extraction,” Electrochem. Solid-State Lett., 7 (5) (2004) A93-A96.
63. Y. Xia, K. Tatsumi, T. Fujieda, P. P. Prosini, and T. Sakai, “Solid-State Lithium-Polymer Batteries Using Lithiated MnO2 Cathodes,” J. Electrochem. Soc., 147 (6) (2000) 2050-2056.
64. M. Ue, “Solution Chemistry of Organic Electrolytes,” Prog. Batteries Battery Materials, 16 (1997) 332-349.
65. L. Gautier, M. Meeus, and J. Scoyer, “Optimized Cathode Material for Lithium-ion Batteries,” Progress in Batteris & Battery Materials, 16 (1997) 30-43.
66. D. H. Doughty, “Materials issues in lithium ion rechargeable battery technology,” SAMPLE Journal, 32 (1996) 75-81.
67. P. G. Bruce, “Solid-State Chemistry of Lithium Power Sources,” Chem. Commun., 19 (1997) 1817-1824.
68. W. D. Johnston, R. R. Heikes, DD. Sestrich, “The preparation, crystallography, and magnetic properties of the LixCo(1-x)O system,” J. Phys. Chem. Solids, 7 (1958) 1-13.
69. C. Delmas, “Alkali metal intercalation in layered oxides,” Mater, Sci. Eng. B, 3 (1-2) (1989) 97-101.
70. S. P. Xu, D. S. Shi, and W. M. Hong, Industrial Material, 110 (1996) 49.
71. C. C. Chang, J. Y. Kim, and P. N. Kumta, “Divalent cation incorporated Li(1+x)MMgxO2(1+x) (M = Ni0.75Co0.25): viable cathode materials for rechargeable lithium-ion batteries,” J. Power Sources, 89 (2000) 56-63.
72. D. G. Wickham and W.J. Croft, “Crystallographic and magnetic properties of several spinels containing trivalent ja-1044 manganese,” J. Phys. Chem. Sloids, 7 (1958) 351-360.
73. J. C. Hunter, “Preparation of A New Crystal Form of Manganese-Dioxide - Lambda-MnO2,” J. Solid State Chem., 39 (1981) 142-147.
74. M. M. Thackeray, W. I. F. David, P. G. Bruce, and J. B. Goodenough, “Lithium Insertion into Manganese Spinels,” Mat. Res. Bull., 18 (4) (1983) 461-472.
75. W. A. Deer, R. A. Howie, and J. Zussman, “An introduction to the rock-forming minerals,” Longman, Colchester, Essex, 1992.
76. P. Villars and L. D. Calvert, “Pearson’s handbook of crystallographic data for intermetallic phases,” Am. Soc. Metals, Metals Park, OH, vol.2., 1985.
77. W. H. Bragg, “The Structure of the Spinel Group of Crystals,” Pjilos. Mag., 30 [176] (1915) 305-315.
78. S. Nishikawa, “Structure of Some Crystals of the Spinel Group,” Proc. Math. Phys. Soc. Tokyo, 8 (1915) 199-209.
79. K. E. Sickafus and J. M. Wills, “Structure of Spinel,” J. Am. Ceram. Soc., 82 [12] (1999) 3279-3292.
80. G. Ceder, A. V. D. Ven, and M. K. Aydinol, “Lithium-Intercalation Oxides for Rechargeable Batteries,” JOM, September (1998) 35-40.
81. C. Bellitto, M. G. DiMarco, W. R. Branford, M.A. Green, and D.A. Neumann, “Cation distribution in Ga-doped Li1.02Mn2O4”, Solid State Ionics, 140 (2001) 77-81.
82. R. J. Gummow, A. DeKock, and M. M. Thackeray, “Improved Capacity Retention in Rechargeable 4 V Lithium/Lithium-Manganese Oxide (Spinel) Cells,” Solid State Ionics, 69 [1] (1994) 59-67.
83. M. M. Thackeray, A. de Kock, M. H. Rossouw, D. Liles, R. Bittihn, and D. Hoge, “Spinel Electrodes from the Li-Mn-O System for Rechargeable Lithium Battery Applications,” J. Electrochem. Soc., 139 (1992) 363-366.
84. M. M. Thackeray, “Manganese Oxides for Lithium Batteries,” Prog. Solid State Chem., 25 (1997) 1-71.
85. M. M. Thackeray, “Spinel Electrodes for Lithium Batteries,” J. Am. Ceram. Soc., 82 [12] (1999) 3347-3354.
86. J. N. Reimers and J. R. Dahn, “Electrochemical and In Situ X-Ray Diffraction Studies of Lithium Intercalation in LixCoO2,” J. Electrochem. Soc., 139 [8] (1992) 2091-2097.
87. C. Delmas, I. Saadoune, and A. Rougier, “The cycling properties of the LixNi1-yCoyO2 electrode,” J. Power Sources, 44 [1-3] (1993) 595-602.
88. T. Ohzuku, A. Ueda, and M. Nagayama, “Electrochemistry and Structrual Chemistry of LiNiO2 (R3m) for 4 Volt Secondary Lithium Cells,” J. Electrochem. Soc., 140 [7] (1993) 1862-1869.
89. J. N. Reimers, E. W. Fuller, E. Rossen, and J. R. Dahn, “Synthesis and Electrochemical Studies of LiMnO2 Prepared at Low Temperature,” J. Electrochem. Soc., 140 [12] (1993) 3396-3401.
90. R. J. Gummow, D. C. Liles, and M. M. Thackeray, “Lithium Extraction from Orthorhombic Lithium Manganese Oxide and the Phase Transformation to Spinel,” Mat. Res. Bull., 28 (1993) 1249-1256.
91. R. J. Gummow and M. M. Thackeray, “An Investigation of Spinel-Related and Orthorhombic LiMnO2 Cathodes for Rechargeable Lithium Batteries,” J. Electrochem. Soc., 141 [5] (1994) 1178-1182.
92. G. Vitins and K. West, “Lithium Intercalation into Layered LiMnO2,” J. Electrochem. Soc., 144 [8] (1997) 2587-2592.
93. I. M. Kotschau and J. R. Dahn, “In Situ X-Ray Study of LiMnO2,” J. Electrochem. Soc., 145 [8] (1998) 2672-2677.
94. A. V. D. Ven, M. K. Aydinol, and G. Ceder, “First-Principles Evidence for Stage Ordering in LixCoO2,” J. Electrochem. Soc., 145 [6] (1998) 2149-2154.
95. C. Wolverton and A. Zunger, “First-Principles Prediction of Vacancy Order-Disorder and Intercalation Battery Voltages in LixCoO2,” Phys. Rev. Lett., 81 [3] (1998) 606-609.
96. J. P. Peres, F. Weill, and C. Delmas, “Lithium/Vacancy Ordering in the Monoclinic LixNiO2 (0.5 ≤ x ≤ 0.75) Solid Solution,” Solid State Ionics, 116 (1999) 19-27.
97. Y. S. Horn, “Structural Characterization of Layered LiMnO2 Electrodes by Electron Diffraction and Lattice Imaging,” J. Electrochem. Soc., 146 [7] (1999) 2404-2412.
98. Z. P. Jiang and K. M. Abraham, “Preparation and electrochemical characterization of micron-sized spinel LiMn2O4,” J. Electrochem. Soc., 143 [5] (1996) 1591-1598.
99. W. Liu, K. Kowal, and G C. Farrington, “Electrochemical characteristics of spinel phase LiMn2O4-based cathode materials prepared by the Pechini process - Influence of firing temperature and dopants,” J. Electrochem. Soc., 143 [11] (1996) 3590-3596.
100. J. H. Choy, D. H. Kim, C. W. Kwon, S. J. Hwang, and Y. I. Kim, “Physical and electrochemical characterization of nanocrystalline LiMn2O4 prepared by a modified citrate route,” J. Power Sources, 77 [1] (1999) 1-11.
101. J. M. Tarascon, E.Wang, and F. K. Shokoohi, “The Spinel Phase of LiMn2O4 as A Cathode in Secondary Lithium Cells,” J. Electrochem. Soc., 138 [10] (1991) 2859-2864.
102. K. T. Hwang, W.S. Um, H. S. Lee, J. K. Song, and K. W, Chung, “Powder synthesis and electrochemical properties of LiMn2O4 prepared by an emulsion-drying method,” J. Power Sources, 74 [2] (1998) 169-174.
103. C. H. Lu and S. W. Lin, “Influence of the particle size on the electrochemical properties of lithium manganese oxide,” J. Power Sources, 97-8 (2001) 458-460.
104. T. Tsumura and M. Inagaki, “Preparation of LiMn2O4 via decarboxylates and their lithium extraction/insertion behavior,” Solid State Ionics, 104 [1-2] (1997) 35-43.
105. Y. K. Sun, “Synthesis and electrochemical studies of spinel Li1.03Mn2O4 cathode materials prepared by a sol-gel method for lithium secondary batteries,” Solid State Ionics, 100 (1997) 115-125.
106. A. Momchilov, V. Manev, and A. Nassalevska, “Rechargeable Lithium Battery with Spinel-Related MnO2 Optimization of the LiMn2O4 Synthesis Conditions,” J. Power Sources, 41 [3] (1993) 305-314.
107. D. Guyomard and J. M. Tarascon, “The Carbon Li1+XMn2O4 System,” Solid State Ionics, 69 [3-4] (1994) 222-237.
108. G. Li, H. Ikuta, T. Uchida, and M. Wakihara, “The Spinel Phases LiMyMn2–yO4 (M = Co, Cr, Ni) as the Cathode for Rechargeable Lithium Batteries,” J. Electrochem. Soc., 143 [1] (1996) 178-182.
109. K. J. Hong and Y. K. Sun, “Synthesis and electrochemical characteristics of LiCrxNi0.5-xMn1.5O4 spinel as 5 V cathode materials for lithium secondary batteries,” J. Power Sources, 109 (2002) 427-430.
110. S. H. Park, K. S. Park, S. S. Moon, Y. K. Sun, and K. S. Nahm, “Synthesis and electrochemical characterization of Li1.02Mg0.1Mn1.9O3.99S0.01 using sol-gel method,” J. Power Sources, 92 (2001) 244-249.
111. J. H. Lee, J. K. Hong, D. H. Jang, Y. K. Sun and S. M Oh, “Degradation mechanisms in doped spinels of LiM0.05Mn1.95O4 (M = Li, B, Al, Co, and Ni) for Li secondary batteries,” J. Power Sources, 89 [1] (2000) 7-14.
112. B. H. Kim, Y. K. Choi, and Y. H. Choa, “Synthesis of LiFexMn2-xO4 cathode materials by emulsion method and their electrochemical properties,” Solid State Ionics, 158 (2003) 281-285.
113. Y. K. Sun and I. H. Oh, “Cycling behavior of oxysulfide spinel LiCr0.19Mn1.81O3.98S0.02 cathode material which shows no capacity loss in the 3-V region,” J. Power Sources, 94 [1] (2001) 132-136.
114. M. Morita, T. Nakagawa, O. Yamada, N. Yoshimoto, and M. Ishikawa, “Influences of the electrolyte composition on the charge and discharge characteristics of LiCr0.1Mn1.9O4 positive electrode,” J. Power Sources, 97-8 (2001) 354-357.
115. G. M. Song, Z. M. Xu, Y. J. Wang, and Y. Zhou, “Synthesis and electrochemical characterization of LiMn2-xAlxO4 powders prepared by mechanical alloying and rotary heating,” Chem. Commun., 5 (2003) 907-912.
116. S. G. Youn, I. H. Lee, C. S. Yoon, C. K. Kim, Y. K. Sun, Y. S. Lee, and M. Yoshio, “Microstructure and cycling behavior of LiAl0.1Mn1.9O4 cathode for lithium secondary batteries at 3 V,” J. Power Sources, 108 [1-2] (2002) 97-105.
117. C. Bellitto, M. G. DiMarco, W. R. Branford, M. A. Green, and D. A. Neumann, “Cation distribution in Ga-doped Li1.02Mn2O4,” Solid State Ionics, 140 (2001) 77-81.
118. G. T. K. Fey, C. Z. Lu, and T. P. Kumar, “Preparation and electrochemical properties of high-voltage cathode materials, LiMyNi0.5-yMn1.5O4 (M = Fe, Cu, Al, Mg; y = 0-0.4),” J. Power Sources, 115 (2003) 332-345.
119. M. Wakihara and O. Tamamoto, Lithium Ion Batteries Fundamental and Performance, Wiley-Vch, 1998, p.42.
120. A. Mobah, A. Verbaere, and M. Tournoux, “LixMnO2-Lamda Phases Related to the Spinel Type,” Mater. Res. Bull., 18 [11] (1983) 1375-1381.
121. P. Strobel, F. Le Cras, L. Seguin, M. Anne, and J. M. Tarascon, “Oxygen nonstoichiometry in Li-Mn-O spinel oxides: A powder neutron diffraction study,” J. Solid State Chem., 135 [1] (1998) 132-139.
122. P. Arora, R. E. White, and M. Doyle, “Capacity fade mechanisms and side reactions in lithium-ion batteries,” J. Electrochem. Soc. 145 [10] (1998) 3647-3667.
123. R. K. Mishra and G. Thomas, “Surface Energy of Spinel,” J. Appli. Phys., 48 [11] (1977) 4576-4580.
124. D. Aubarch and Y. Gofer, “The Behavior of Lithium Electrodes in Mixtures of Alkyl Carbonates and Ethers,” J. Electrochem. Soc., 138 [12] (1991) 3529-3535.
125. D. Aubarch, A. Zaban, A. Schlecter, Y. Ein-Eli, E. Zinigrad, and B. Markowsky, “The Study of Electrolyte Solutions Based on Ethylene and Diethyl Carbonates for Rechargeable Li Batteries. I. Li Anodes,” J. Electrochem. Soc., 142 [9] (1995) 2873-2881.
126. D. H. Jang, Y. J. Shin, and S. M. Oh, “Dissolution of Spinel Oxides and Capacity Losses in 4 V Li/LixMn2O4 Cells,” J. Electrochem. Soc., 143 [7] (1996) 2204-2211.
127. D. H. Jang and S. M. Oh, “Electrolyte Effects on Spinel Dissolution and Cathodic Capacity Losses in 4 V Li/LixMn2O4 Rechargeable Cells,” J. Electrochem. Soc., 144 [10] (1997) 3342-3348.
128. G. G. Amatucci, A. Blyr, C. Sigala, P. Alfonse, and J. M. Tarascon, “Surface treatments of Li1+xMn2-xO4 spinels for improved elevated temperature performance,” Solid State Ionics, 104 [1-2] (1997) 13-25.
129. M. Eddrief, P. Dzwonkowski, and C. Julien, “The AC Conductivity in B2O3-Li2O Films,” Solid State Ionics, 45 [1-2] (1991) 77-82.
130. W. Soppe, F. Aldenkamp, and H. W. den Hartog, “The Structure and Conductivity of Binary and Ternary Glasses (B2O3)1-X-Y(Li2O)X(Li2Cl2)Y,” J. Non-cryst. Solids, 91 [3] (1987) 351-374.
131. J. Ying, C. Wan, and C. Jiang, “Surface treatment of LiNi0.8Co0.2O2 cathode material for lithium secondary batteries,” J. Power Sources, 102 [1-2] (2001) 162-166.
132. H. J. Kweon, S. J. Kim, and D. G. Park, “Modification of LixNi1-yCoyO2 by applying a surface coating of MgO,” J. Power Sources, 88 (2) (2000) 255-261.
133. B. D. Cullity, Elements of X-ray Diffraction, 2nd Edition, Addison Wesley, California (1978) 355.
134. J. I. Goldstein, Scanning Electron Microscopy and X-ray Microanalysis, 2nd Edition, Plenum Press, New York (1981) 405.
135. Jeol, Eelectron Probe Microanalysis JXA-8800, Tokyo (1991).
136. Y. Xia, N. Kumada, and M. Yoshio, “Enhancing the elevated temperature performance of Li/LiMn2O4 cells by reducing LiMn2O4 surface area,” J. Power Sources, 90 (2000) 135-138.
137. Y. K. Sun, C. S. Yoon, C. K. Kim, S. G. Youn, Y. S. Lee, M. Yoshio, and I. H. Oh, “Degradation mechanism of spinel LiAl0.2Mn1.8O4 cathode materials on high temperature cycling,” J. Mater. Chem., 11 (2001) 2519-2522.
138. H. W. Chan: Li1+xMn2O4 and LiCryMn2-yO4 prepared by co-precipitation method as cathode material (Thesis, National Tsing Hua University Taiwan 2002).
139. H. W. Chan, J. G. Duh, and S. R. Sheen, Proceeding of Advanced Materials for Energy Conversion II, pp. 347-353, published by TMS (The Minerals, Metals and Materials Society), 14-18 March, 2004, Charlotte, NC., U.S.A.
140. H. W. Chan, J. G. Duh, and S. R. Sheen, “Surface Treatment of the Lithium Boron Oxide Coated LiMn2O4 Cathode Material in Li-ion Battery,” Key Eng. Mater., 280-283 (2) (2005) 671-675.
141. A. Du Pasquier, A. Blyr, P. Courjal, D. Larcher, G. G. Amatucci, B. Gérand, and J. M. Tarascon, “Mechanism for limited 55 degrees C storage performance of Li1.05Mn1.95O4 electrodes,” J. Electrochem. Soc., 146 (2) (1999) 428-436.
142. Y. Xia and M. Yoshio, “An investigation of lithium ion insertion into spinel structure Li-Mn-O compounds,” J. Electrochem. Soc., 143 (3) (1996) 825-833.
143. S. Mukerjee, X. Q. Yang, X. Sun, S. J. Lee, J. McBreen, and Y. E. Eli, “In situ synchrotron X-ray studies on copper-nickel 5 V Mn oxide spinel cathodes for Li-ion batteries,” Electrochim. Acta, 49 (20) (2004) 3373-3382.
144. Y. Gao and J. R. Dahn, “Synthesis and characterization of Li1+xMn2-xO4 for Li-ion battery applications,” J. Electrochem. Soc., 143 (1) (1996) 100-114.
145. Y. Xia, T. Sakai, T. Fujieda, X. Q. Yang, X. Sun, Z. F. Ma, J. McBreen, and M. Yoshio, “Correlating capacity fading and structural changes in Li1+yMn2-yO4-delta spinel cathode materials - A systematic study on the effects of Li/Mn ratio and oxygen deficiency,” J. Electrochem. Soc., 148 (7) (2001) A723-A729.
146. X. Q. Yang, X. Sun, M. Balasubramanian, J. McBreen, Y. Xia, T. Sakai, and M. Yoshio, “The population of oxygen vacancies in Li1+yMn2-yO4-delta type cathode materials - The primary factor of temperature dependent structural changes,” Electrochem. Solid-State Lett., 4 (8) (2000) A117-A120.
147. X. Q. Yang, X. Sun, S. J. Lee, J. Mcbreen, S. Mukerjee, M. L. Daroux, and X. K. Xing, “In situ synchrotron X-ray diffraction studies of the phase transitions in LixMn2O4 cathode materials,” Electrochem. Solid-State Lett., 2 (4) (1999) 157-160.
148. X. Sun, X. Q. Yang, M. Balasubramanian, J. McBreen, Y. Xia, and T. Sakai, “In situ investigation of phase transitions of Li1+yMn2O4 spinel during Li-ion extraction and insertion,” J. Electrochem. Soc., 149 (7) (2002) A842-A848.
149. N. Li, C. J. Patrissi, G. Che, and C. R. Martin, “Rate capabilities of nanostructured LiMn2O4 electrodes in aqueous electrolyte,” J. Electrochem. Soc., 147 (6) (2000) 2044-2049.
150. I. Nakai, T. Nakagome, “In situ transmission X-ray absorption fine structure analysis of the Li deintercalation process in Li(Ni0.5Co0.5)O2,” Electrochem. Solid State Lett., 1 (6) (1998) 259-261.