研究生: |
楊晏東 Yang, Yen-Tung |
---|---|
論文名稱: |
製備零價銅/鈦酸鹽奈米管/石墨烯複合材料 應用於光電催化降解微囊藻毒素-LR型 Fabrication of Cu0/TNT/rGO Composite for Photoelectrocatalytic Degradation of Microcystin-LR |
指導教授: |
董瑞安
Doong, Ruey-An |
口試委員: |
孫毓璋
Sun, Yuh-Chang 李俊琦 Lee, Chun-Chi 林芳新 Lin, Fang-Hsin |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 107 |
中文關鍵詞: | 微囊藻毒素-LR型 、光電催化降解 、鈦酸鹽奈米管 、石墨烯複合材料 |
外文關鍵詞: | Microcystin-LR, Photoelectrocatalysis, Titanate nanotubes, Graphene composite |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
光電催化技術應用於降解微囊藻毒素-LR型為一新穎且可行之技術,因同時具備有光催化以及電催化特性,被視為一有效提升光觸媒材料的光催能力之方法。
本研究利用微波輔助水熱法及熱處理方式得到表面沉積二氧化鈦晶體之鈦酸鹽奈米管,且利用NaBH4和氫氣鍛燒,同步還原銅離子與氧化石墨烯成零價銅及石墨烯,成功製備銅/鈦酸鹽奈米管/石墨烯複合材料(Cu0/TNT/rGO),並應用於光電催化降解微囊藻毒素-LR型。從XRD、TEM及EIS結果顯示,石墨烯的加入可使零價銅/鈦酸鹽奈米管避免因高溫鍛燒而容易聚集之缺點,並同時降低複合材料材之阻抗。在光電催化降解方面,本研究著重探討銅量差異(1-8 wt%)以及不同銅物種(Cu0, Cu2O, CuO)對光電催化降解影響。當銅附載量為8 wt% 時有最佳光電催化能力,反應180分鐘後可降解85 %之MC-LR,其反應速率可達到1.2*10-2 min-1。從EPR及EIS結果發現,TNT-450在照光下僅能產生氫氧自由基(•OH);但當有零價銅存在時,照光後可產生•OH、•OOH和•OOR等自由基,且其阻抗值亦隨著銅量增加而下降,證明零價銅的重要性不僅可提升複合材料產生自由基的能力,且亦可降低材料本身之阻抗,有效地抑制電子電洞對再結合。
Photoelectrocatalysis which combines photocatalytic and electrocatalytic processes, is not only a novel and feasible method for degradation of Microcystin-LR, but also a powerful method to enhance the photocatalytic activity of photocatalyst.
In this study, we have been successfully fabricated zero-valent copper/titanate nanotubes/graphene composite (Cu0/TNT/rGO) and apply to photoelectrocatalytic degradation of Microcystin-LR. At first, we can obtain the titanate nanotubes which is covered by titanium dioxide nanocrystals from microwave-assisted hydrothermal method and thermal treatment. Then we can get the zero-valent copper/titanate nanotubes/graphene composite from sodium borohydride reduction and hydrogen gas calcination of copper ions and graphene oxide. The XRD, TEM, and EIS showed that graphene can avoid the composite from aggregation due to high temperature calcination, and suppress the impedance of the composite. For photoelectrocatalytic application, we focus on discussing the effects caused by the different the amount and species of copper. The results showed that the degradation ratio of Microcystin-LR is 85 % in 180 mins and the rate constant is 1.2*10-2 min-1 when the copper loading of Cu0/TNT/rGO is 8 wt% which is the best performance. The EPR and EIS results displayed that the presence of zero-valent copper in Cu0/TNT/rGO can produce •OH, •OOH and •OOR under UV light illumination, but pure calcined titanate nanotubes can only produce •OH. This study demonstrates that the importance of zero-valent copper in Cu0/TNT/rGO can not only enhance the ability to generate free radicals, but also suppress the electron-hole recombination by decreasing the impedance.
1. Lawton, L.A., Robertson, P.K.J., Physico-chemical treatment methods for the removal of microcystins (cyanobacterial hepatotoxins) from potable waters, Chem. Soc. Rev., 1999, 28, 217-224.
2. Carmichael, W.W., Azevedo, S.M.F.O., An J.S.,. Molica, R.J.R, Jochimsen, E.M., Lau, S., Rinehart, K.L., Shaw, G.R., Eaglesham, G.K., Human fatalities form cyanobacteria: chemical and biological evidence for cyanotoxins, Environ. Health Perspect., 2001, 109, 663-668.
3. Nakata, K., Fujishima, A., TiO2 photocatalysis: Design and applications. J. Photoch. Photobio. C, 2012, 13, 169-189.
4. Shankar, K., Mor, G.K., Prakasam, H.E., Yoriya, S., Paulose, M., Varghese, O.K, Grimes, C.A., Highly-ordered TiO2 nanotube arrays up to 220 µm in length: use in water photoelectrolysis and dye-sensitized solar cells. Nanotechnology, 2007, 18.
5. Liu, Z., Zhang, X.T., Nishimoto, S., Jin, M., Tryk, D.A., Murakami, T., Fujishima, A.. Highly Ordered TiO2 Nanotube Arrays with Controllable Length for Photoelectrocatalytic Degradation of Phenol. J. Phys. Chem. C., 2008, 112, 253–259.
6. Inagaki, M., Kondo, N., Nonaka, R., Ito, E., Toyoda, M., Sogabe, K., Tsumura, T., Structure and photoactivity of titania derived from nanotubes and nanofibers. J. Hazard. Mater., 2009, 161, 1514-1521.
7. Doong, R.A., Tsai, C.W, Liao, C.I, Coupled removal of bisphenol A and copper ion by titanate nanotubes fabricated at different calcination temperatures. Sep. Purif. Technol., 2012, 91, 81-88.
8. Xin, Y.J., Gao, M.C., Wang, Y.C., Ma, D., Photoelectrocatalytic degradation of
4-nonylphenol in water with WO3/TiO2 nanotube array photoelectrodes. Chem.Eng.J., 2014, 242, 162-169.
9. Zhang, H., Lv, X., Li, Y., Wang, Y., Li, J., P25-Graphene Composite as a High Performance Photocatalyst. ACS Nano, 2009, 4, 380-386.
10. Sharma, V.K., Triantis, T.M., Antoniou, M.G., He, X.X, Pelaez, M., Han, C., Song, W.H., O'Shea, K.E., de la Cruz, A.A., Kaloudis, T., Hiskia, A., Dionysiou, D.D., Destruction of microcystins by conventional and advanced oxidation processes: A review. Sep. Purif. Technol., 2012, 91, 3-17
11. Pereira, S.R., Vasconcelos, V.M., Antunes, A., Computational study of the covalent bonding of microcystins to cysteine residues–a reaction involved in the inhibition of the PPP family of protein phosphatases. FEBS Journal, 2013, 280, 674-680
12. Bury, N.R., Flik, G., Eddy, F.B., Godd, G.A., The effects of cyanobacteria and the cyanobacterial toxin microcystin-LR on Ca2+ transport and Na+/K+-ATPase in tilapia gills. J. Exp. Bio., 1996, 199, 1319-1326
13. Campinas, M., Rosa, M.J., Removal of microcystins by PAC/UF, Sep. Purif. Technol., 2010, 71, 114-120.
14. Teixeira, M.R., Rosa, M.J., Microcystins removal by nanofiltration membranes, Sep. Purif. Technol., 2005, 46, 192-201.
15. Campinas, M., Rosa, M.J., Evaluation of cyanobacterial cells removal and lysis by ultrafiltration, Sep. Purif. Technol., 2010, 70, 345-353.
16. Teixeira, M.R., Rosa, M.J., Comparing dissolved air flotation and conventional sedimentation to remove cyanobacterial cells of Microcystis aeruginosa: Part I: the key operating conditions, Sep. Purif. Technol., 2006, 52, 84-94.
17. Ma, M., Liu, R., Liu, H., Qu, J., Jefferson, W., Effects and mechanisms of prechlorinationon Microcystis aeruginosa removal by alum coagulation:
Significance of the released intracellular organic matter, Sep. Purif. Technol., 2012, 86, 19-25.
18. Tsuji, K., Watanuki, T., Kondo, F., Watanabe, M.F., Nakazawa, H., Suzuki, M., Uchida, H., Harada, K.I., Stability of microcystins from cyanobacteria-IV. Effect of chlorination on decomposition, Toxicon, 1997, 35, 1033-1041.
19. Merel, S., LeBot, B., Clement, M., Seux, R., Thomas, O., MS identification of microcystin-LR chlorination by-products, Chemosphere, 2009, 74, 832-839.
20. de la Cruz, A.A., Antoniou, M.G., Hiskia, A., Pelaez, M., Song, W., O’Shea, K.E., He, X., Dionysiou, D.D., Can we effectively degrade microcystins?–implications on human health, Anti-Cancer Agents Med. Chem., 2011, 11, 19-37.
21. http://www.water-research.net/index.php/ozonation
22. Deng, Y., Zhao, R., Advanced Oxidation Processes (AOPs) in Wastewater Treatment. Curr Pollution Rep, 2015, 1, 167-176.
23. Qiao, R.P., Ma, Y.M., Qi, X.H., Li, N., Jin, X.C., Wang, Q.S., Zhuang, Y.Y., Degradation of microcystin-RR by combination of UV/H2O2 technique, Chinese Chem. Lett., 2005, 16, 1271-1274.
24. Qiao, R.P., Li, N., Qi, X.H., Wang, Q.S., Zhuang, Y.Y., Degradation of microcystin-RR by UV radiation in the presence of hydrogen peroxide, Toxicon, 2005, 45, 745-752.
25. Li, L., Gao, N.Y., Deng, Y., Yao, J.J., Zhang, K.J., Li, H.J., Yin, D.D., Ou, H.S., Guo, J.W., Experimental and model comparisons of H2O2 assisted UV photodegradation of Microcystin-LR in simulated drinking water, J. Zhejiang Univ. Sci. A, 2009, 10, 1660-1669.
26. Bandala, E.R., Martinez, D., Martinez, E., Dionysiou, D.D., Degradation of microcystin-LR toxin by Fenton and Photo-Fenton processes, Toxicon, 2004, 43, 829-832
27. Gajdek, P., Lechowski, Z., Bochnia, T., Kepczynski, M., Decomposition of microcystin-LR by Fenton oxidation, Toxicon, 2001, 39, 1575-1578.
28. He, X.X., Pelaez, M., Westrick, J.A., O'shea, K.E., Hiskia, A., Triantis, T., Kaloudis, T., Stefan, M.I., de la Cruz, A.A., Dionysiou, D.D., Efficient removal of microcystin-LR by UV-C/H2O2 in synthetic and natural water samples. Water Res., 2012, 1501-1510.
29. Antoniou, M.G., Nicolaou, P.A., Shoemaker, J.A., de la Cruz, A.A., Dionysiou, D.D., Impact of the morphological properties of thin TiO2 photocatalytic films on the detoxification of water contaminated with the cyanotoxin, microcystin-LR, Appl. Catal., B, 2009, 91, 165-173.
30. Pelaez, M., Falaras, P., Likodimos, V., Kontos, A.G., de la Cruz, A.A., O’Shea, K., Dionysiou, D.D., Synthesis, structural characterization and evaluation of sol-gel based NF-TiO2 films with visible light-photoactivation for the removal of microcystin-LR, Appl. Catal., B, 2010, 99, 378-387.
31. Antoniou, M.G., Shoemaker, J.A., de la Cruz, A.A., Dionysiou, D.D., Unveiling new degradation intermediates/pathways from the photocatalytic degradation of microcystin-LR, Environ. Sci. Technol., 2008, 42, 8877-8883.
32. Antoniou, M.G., Shoemaker, J.A., de la Cruz, A.A., Dionysiou, D.D., LC/MS/MS structure elucidation of reaction intermediates formed during the TiO2 photocatalysis of microcystin-LR, Toxicon, 2008, 51, 1103-1118.
33. Changseok, H., Miguel, P., Vlassis, L., Athanassios, G. K., Polycarpos, F., O’Shea K., Dionysios, D. D., Innovative visible light-activated sulfur doped TiO2 films for water treatment. Appl. Catal., B, 2011, 107, 77-87.
34. Pelaez, M., de la Cruz, A.A., O'Shea, K., Falaras, P., Dionysiou, D.D., Effects of water parameters on the degradation of microcystin-LR under visible
light-activated TiO2 photocatalyst, Water Res., 2011, 45, 3787-3796.
35. Pelaez, M., Falaras, P., Kontos, A.G., de la Cruz, A.A., O'Shea, K., Dunlop, P.S.M., Byme, J.A., Dionysiou, D.D., A comparative study on the removal of cylindrospermopsin and microcystins from water with NF-TiO2-P25 composite films with visible and UV–vis light photocatalytic activity. Appl. Catal., B, 2012, 121-122, 37-39.
36. Dong W.Y., Sun Y.J, Ma Q.W., Zhu L., Hua W.M., Lu X.C., Zhuang G.S., Zhang S.C, Guo Z.G., Zhao D.Y., Excellent photocatalytic degradation activities of ordered mesoporous anatase TiO2-SiO2 nanocomposites to various organic contaminants. J. Hazard. Mater., 2012, 229-230, 307-320.
37. Wang X., Utsumi M., Yang Y., Li D.W., Zhao Y.X., Zhang Z.Y., Feng C.P., Sugiur N., Cheng J.J., Degradation of microcystin-LR by highly efficient AgBr/Ag3PO4/TiO2heterojunction photocatalyst under simulated solar light irradiation. Appl. Surf. Sci., 2015, 325, 1-12.
38. Zhang G., Zhang Y.C., Nadagouda M., Hana C., O'Shead K,, El-Sheikhe S.M., Ismaile A.A., Dionysiou D.D., Visible light-sensitized S, N and C co-doped polymorphic TiO2 for photocatalytic destruction of microcystin-LR. Appl. Catal., B, 2014, 144, 614-621.
39. Liu G.L., Han, C., Pelaez, M., Zhu, D.W., Liao, S.J., Likodimos, V., Kontosc, A.G., Falaras, P., Dionysiou, D.D., Enhanced visible light photocatalytic activity of C N-codoped TiO2 films for the degradation of microcystin-LR. J. Mol. Catal. A: Chem., 2013, 372, 58-65.
40. Daghrir, R., Drogui, P., Robert, D., Photoelectrocatalytic technologies for environmental applications. J. Photoch. Photobio. C, 2012, 238, 41- 52.
41. Wang, Q.Y., Wang, X.T., Zhang, M., Li, G.H., Gao, S.M., Li, M.Y., Zhang, Y.Q., Influence of Ag–Au microstructure on the photoelectrocatalytic performance of
TiO2 nanotube array photocatalysts. J. Colloid Interface Sci., 2016, 463, 308-316.
42. Zhang, Z.H., Yu, Y.J., Wang, P., Hierarchical Top-Porous/Bottom-Tubular TiO2 Nanostructures Decorated with Pd Nanoparticles for Efficient Photoelectrocatalytic Decomposition of Synergistic Pollutants. ACS Appl. Mater. Interfaces, 2012, 4, 990-996.
43. Cheng, X.W., Pan, G.P., Yu, X.J., Zheng, T., Preparation of CdS NCs decorated TiO2 nano-tubes arrays photoelectrode and its enhanced photoelectrocatalytic performance and mechanism. Electrochim. Acta, 2013, 105, 535-541.
44. Tran, T.T., Sheng, P.T., Huang, C., Li, J.Z., Chen, L., Yuan, L.J., Grimes, C.A., Cai, Q.Y., Synthesis and photocatalytic application of ternary Cu–Zn–S nanoparticle-sensitized TiO2 nanotube arrays. Chem.Eng.J., 2012, 210, 425-431.
45. Dai, G.P., Liu, S.Q., Liang, Y., Luo, T.X., Synthesis and enhanced photoelectrocatalytic activity of p–n junction Co3O4/TiO2 nanotube arrays. Appl. Surf. Sci., 2013, 264, 157-161.
46. Zhu, Y.M., Wang, R.L., Zhang, W.P., Ge, H.Y., Li, L., CdS and PbS nanoparticles co-sensitized TiO2 nanotube arrays andtheir enhanced photoelectrochemical property. Appl. Surf. Sci, 2014, 315, 149-153.
47. Tian, J., Zhao, Z.H., Kumar, A., Boughton, R.I., Liu, H., Recent progress in design, synthesis, and applications of one-dimensional TiO2 nanostructured surface heterostructures: a review. Chem. Soc. Rev., 2014, 43, 6920-6937.
48. Wang, H.L., Zhang, L.S., Chen, Z.G., Hu, J.Q., Li, S.J., Wang, Z.H., Liu, J.S, Wang, X.C., Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chem. Soc. Rev., 2014, 43, 5234-5244.
49. Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T., Niihara, K., Formation of Titanium Oxide Nanotube. Langmuir, 1998, 14, 3160-3163.
50. Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T., Niihara, K., Titania Nanotubes
Prepared by Chemical Processing. Adv. Mater. 1999, 11, 1307-1311.
51. Bavykin, D.V., Friedrich, J.M., Walsh, F.C., Protonated titanates and TiO2 nanostructured materials Synthesis, properties, and applications. Adv. Mater., 2006, 18, 2807-2824.
52. Yang, J.J., Jin, Z.S., Wang, X.D., Li, W., Zhang, J.W., Zhang, S.L., Guo, X.Y., Zhang, Z.J., Study on composition, structure and formation process of nanotube Na2Ti2O4(OH)2. Dalton Trans., 2003, 3898-3901.
53. Bavykin, D.V., Parmon, V.N., Lapkin, A.A., Walsh, F.C., The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes. J. Mater. Chem. 2004, 14, 3370-3377.
54. Wang, W., Varghese, O. K., Paulose, M., Grimes, C. A., A study on the growth and structure of titania nanotubes. J. Mater. Res. 2004, 19, 417-422.
55. Ma, R., Bando, Y., Sasaki, T., Nanotubes of lepidocrocite titanates. Chem. Phys. Lett., 2003, 380, 577-582.
56. Nian, J.N., Teng, H., Hydrothermal Synthesis of Single-Crystalline Anatase TiO2 Nanorods with Nanotubes as the Precursor. J. Phys. Chem. B, 2006, 110, 4193-4198.
57. Lee, C.K., Wang, C.C., Lyu, M.D., Juang, L.C., Liu, S.S., Hung, S.H., Effects of sodium content and calcination temperature on the morphology, structure and photocatalytic activity of nanotubular titanates. J. Colloid Interface Sci., 2007, 316, 562-569.
58. Morgado, E. Jr., de Abreu, M.A.S., Pravia, O.R.C., Marinkovic, B.A., Jardim, P.M. , Rizzo, F.C., Araújo, A.S., A study on the structure and thermal stability of titanate nanotubes as a function of sodium content. Solid State Sci., 2006, 8 ,888-900.
59. Zhao, Q. , Li, M., Chu, J., Jiang, T., Yin, H., Preparation, characterization of Au
(or Pt)-loaded titania nanotubes and their photocatalytic activities for degradation of methyl orange. Appl. Surf. Sci., 2009, 255, 3773-3778.
60. Plodinec, M., Gajovic, A., Jaksa, G., Zagar, K., Ceh, M., High-temperature hydrogenation of pure and silver-decorated titanate nanotubes to increase their solar absorbance for photocatalytic applications. J. Alloys Compd., 2014, 591, 147-155.
61. Geim, A.K., Novoselov, K.S., The rise of graphene. Nat. Mater., 2007, 6, 183-191.
62. Novoselov, K.S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V, Grigorieva, I. V., Firsov, A. A., Electric field effect in atomically thin carbon films. Science, 2004, 306, 666-669.
63. Xiang, Q.J., Yu, J.G., Jaroniec, M., Graphene-based semiconductor photocatalysts. Chem. Soc. Rev., 2012,41, 782-796.
64. Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J.W., Potts, J.R., Ruoff, R.S., Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Adv. Mater., 2010, 22, 3906-3924.
65. Du, X., Skachko, I., Barker, A., Andrei, E.Y., Approaching ballistic transport in suspended graphene. Nat. Nanotechnol., 2008, 3, 491-495.
66. Huang, X., Yin, Z.Y., Wu, S.X., Qi, X.Y., He, Q.Y., Zhang, Q.C., Yan, Q.Y., Boey, F., Zhang, H., Graphene-Based Materials: Synthesis, Characterization, Properties, and Applications. Small, 2011, 7, 1876-1902.
67. Upadhyay, R.K., Soin, N., Roy, S.S., Role of graphene metal oxide composites as photocatalysts, adsorbents and disinfectants in water treatment a review. RSC Adv., 2014, 4, 3823-3851
68. Zhao, D., Sheng, G., Chen, C., Wang, X., Enhanced photocatalytic degradation of methylene blue under visible irradiation on graphene@TiO2 dyade structure. Appl. Catal. B, 2012, 111-112,303-30.
69. Bai, H., Li, C., Shi, G., Functional Composite Materials Based on Chemically Converted Graphene. Adv. Mater., 2011, 23, 1089-1115.
70. An, X.Q., Yu, J.C., Graphene-based photocatalytic composites. RSC Adv., 2011, 1, 1426-1434.
71. Tang, Y., Luo, S., Teng, Y., Liu, C., Xu, X., Zhang, X., Chen, L., Efficient removal of herbicide 2,4-dichlorophenoxyacetic acid from water using Ag/reduced graphene oxide co-decorated TiO2 nanotube arrays. J. Hazard.Mater., 2012, 241-242, 323-330.
72. Farhangi, N., Chowdhury, R. R., Medina-Gonzalez, Y., Ray, M. B., Charpentier, P. A., Visible light active Fe doped TiO2 nanowires grown on graphene using supercritical CO2. Appl. Catal., B., 2011, 110, 25-32.
73. Zhang, K., Kemp, K.C., Chandra, V., Homogeneous anchoring of TiO2 nanoparticles on graphene sheets for waste water treatment. Mater. Lett., 2012, 81, 127-130.
74. Li, K., Chen, T., Yan, L., Dai, Y., Huang, Z., Xiong, J., Song, D., Lv, Y., Zeng, Z., Design of graphene and silica co-doped titania composites with ordered mesostructure and their simulated sunlight photocatalytic performance towards atrazine degradation. Colloids Surf., A, 2013, 422, 90-99.
75. Li, K., Chen, T., Yan, L., Dai, Y., Huang, Z., Guo, H., Jiang, L., Gao, X., Xiong, J., Song, D., Synthesis of mesoporous graphene and tourmaline co-doped titania composites and their photocatalytic activity towards organic pollutant degradation and eutrophic water treatment. Catal. Commun., 2012, 28, 196-201.
76. Stengl, V. C., Popelkov´a, D., Vlacil, P., TiO2–Graphene Nanocomposite as High Performace Photocatalysts. J. Phys. Chem. C, 2011, 115, 25209-25218
77. Perera, S. D., Mariano, R. G., Vu, K., Nour, N., Seitz, O., Chabal, Y. , Balkus, K. J. Jr, Hydrothermal Synthesis of Graphene-TiO2 Nanotube Composites with
Enhanced Photocatalytic Activity. ACS Catal., 2012, 2, 949-956.
78. Pastrana-Mart´ınez, L. M., Morales-Torres, S., Likodimos, V., Figueiredo, J. L., Faria, J.L., Falaras, P., Silva, A.M., Advanced nanostructured photocatalysts based on reduced graphene oxide–TiO2 composites for degradation of diphenhydramine pharmaceutical and methyl orange dye. Appl. Catal., B, 2012, 123-124, 241-256.
79. Cao, B., Cao, S., Dong, P., Gao, J., Wang, J., High antibacterial activity of ultrafine TiO2/graphene sheets nanocomposites under visible light irradiation. Mater. Lett,. 2013, 93, 349-352.
80. Akhavan, O., Ghaderi, E., Rahimi, K., Adverse effects of graphene incorporated in TiO2 photocatalyst on minuscule animals under solar light irradiation. J. Mater. Chem., 2012, 22, 23260-23266.
81. Doong, R.A., Chang, S.M., Tsai, C.W., Enhanced photoactivity of Cu-deposited titanate nanotubes for removal of bisphenol A. Appl. Catal. B: Environ., 2013, 129, 48-55.
82. Doong, R.A., Liao, C.Y., Enhanced visible-light-responsive photodegradation of bisphenol A by Cu, N-codoped titanate nanotubes prepared by microwave-assisted hydrothermal method. J. Hazard. Mater., 2016, http://dx.doi.org/10.1016/j.jhazmat.2016.02.065.
83. Sun, X., Li, Y., Synthesis and Characterization of Ion‐Exchangeable Titanate Nanotubes. Chem. Eur. J. 2003, 9, 2229-2238.
84. Seo, H.K., Kim, G.S., Ansari, S.G., Kim, Y.S., Shin, H.S., Shim, K.H., Suh, E.K., A study on the structure/phase transformation of titanate nanotubes synthesized at
various hydrothermal temperatures. Sol. Energy Mater. Sol. Cells, 2008, 92, 1533-1539.
85. Yang, D., Velamakanni, A., Bozoklu, G., Park, S., Stoller, M., Piner, R.D., Stankovich, S., Jung, I., Field, D.A., Ventrice Jr., C.A., Ruoff, R.S., Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy. Carbon, 2009, 47, 145-152.
86. Stankovich, S., Dikin, D.A., Piner, R.D., Kohlhaas, K.A., Kleinhammes, A., Jia, Y.Y., Wu, Y., Nguyen, S.T., Ruoff, R.S., Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 2007, 45, 1558-1565.
87. Chen, P., Wu, X., Lin, J., Tan, K.L., Synthesis of Cu Nanoparticles and Microsized Fibers by Using Carbon Nanotubes as a Template. Phys. Chem. B. 1999, 103, 4559-4561.
88. Wang, D.T., Li, X., Chen, J.F., Tao, X., Enhanced photoelectrocatalytic activity of reduced graphene oxide TiO2 composite films for dye degradation. Chem. Eng. J., 2012, 198-199, 547-554.
89. Wang, P.F., Ao, Y.H., Wang, C., Hou, J., Qian, J., Enhanced photoelectrocatalytic activity for dye degradation by graphene–titania composite film electrodes. J. Hazard. Mater., 2012, 223-224, 79-83.
90. Shin, H.J., Kim, K.K., Benayad A., Yoon S.M., Park H.K., Jung I.S., Jin M.H., Jeong H.K, Kim J.M., Choi J.Y. and Lee Y.H., Efficient Reduction of Graphite Oxide by Sodium Borohydride and Its Effect on Electrical Conductance. J. Hazard. Mater., 2012, 223-224, 79-83.
91. Chua, C.K., Pumera, M., Reduction of graphene oxide with substituted borohydrides. J. Mater. Chem. A, 2013, 1, 1892-1898
92. Min, S.D., Zhao, C.J., Chen, G.R., Qian, X.Z., One-pot hydrothermal synthesis of reduced graphene oxide Ni(OH)2 films on nickel foam for high performance
supercapacitors. Electrochim. Acta, 2014, 115, 155-164.
93. Wang, D.W., Min, Y.G., Yu, Y.H., Peng, B., A general approach for fabrication of nitrogen-doped graphene sheets and its application in supercapacitors. J. Colloid Interface Sci., 2014, 417, 270–277.
94. Hasan, M.R., Hamid, S.B.A., Basirun, W.J., Charge transfer behavior of graphene-titania photoanode in CO2 photoelectrocatalysis process. Appl. Surf. Sci., 2015, 339, 22-27.
95. Brezova, V., Dvoranova, D., Stasko, A., Characterization of titanium dioxide photoactivity following the formation of radicals by EPR spectroscopy. Res. Chem. Intermed., 2007, 33, 251-268.
96. Parsheti, G.K., Doong, R.A., Dechlorination and photodegradation of trichloroethylene by Fe/TiO2 nanocomposites in the presence of nickel ions under anoxic conditions. Appl. Catal. B-Environ., 2010, 100, 116-123.
97. Yang, D., Jiang, Z., Shi, H.H., Xiao, T.C., Yan, Z.F., Preparation of highly visible-light active N-doped TiO2 photocatalyst. J. Mater. Chem., 2010, 20, 5301-5309.
98. Chiang, L.F., Doong, R.A., Cu–TiO2 nanorods with enhanced ultraviolet- and visible-light photoactivity for bisphenol A degradation. J. Hazard. Mater., 2014, 277, 84-92.
99. Chiang, L.F., Doong, R.A., Enhanced photocatalytic degradation of sulfamethoxazole by visible-light-sensitive TiO2 with low Cu addition. Sep. Purif. Technol., 2015, 156, 1003-1010.
100. Chong, M.N., Jin, B., Chow, C.W.K., Saint, C., Recent developments in photocatalytic water treatment technology: a review. Water Res., 2010, 44, 2997-3027.
101. Wang, N., Li, X., Wang, Y., Quan, X., Chen, G., Evaluation of bias potential
enhanced photocatalytic degradation of 4-chlorophenol with TiO2 nanotube fabricated by anodic oxidation method. Chem. Eng. J., 2009, 146, 30-35.
102. Dionysiou, D.D., Suidan, M.T., Bekou, E., Baudin, I., Laine, J.M., Effect of ionic strength and hydrogen peroxide on the photocatalytic degradation of 4-chlorobenzoic acid in water. Appl. Catal. B-Environ., 2000, 26, 153-17.
103. Ahmed, S., Rasul, M.G., Martens, W.N., Brown, R., Hashib, M.A., Advances in heterogeneous photocatalytic degradation of phenols and dyes in wastewater: a review. Water, Air, Soil Pollut., 2011, 215, 3-29.
104. Selcuk, H., Sene, J.J, Anderson, M.A., Photoelectrocatalytic humic acid degradation kinetics and effect of pH, applied potential and inorganic ions. J. Chem. Technol. Biotechnol., 2003, 78, 979-984.
105. Ghodbane, H., Hamdaoui, O., Decolorization of antraquinonic dye, C.I. Acid Blue 25, in aqueous solution by direct UV irradiation, UV/H2O2 and UV/Fe(II) processes, Chem. Eng. J., 2010, 160, 226-231.
106. AlHamedi, F.H., Rauf, M.A., Ashraf, S.S., Degradation studies of Rhodamine B in the presence of UV/H2O2, Desalination, 2009, 239, 159-166.
107. Liao, W.J., Zhang, Y.R., Zhang, M., Murugananthan, M., Yoshihara, S., Photoelectrocatalytic degradation of microcystin-LR using Ag/AgCl/TiO2 nanotube arrays electrode under visible light irradiation. Chem. Eng. J., 2013, 231, 455-463.
108. Yuan, R., Ramjaun, S.N., Wang, Z., Liu, J., Effects of chloride ion on degradation of Acid Orange 7 by sulfate radical-based advanced oxidation process: Implications for formation of chlorinated aromatic compounds, J. Hazard. Mater., 2011, 196, 173-179.
109. Antoniou, M.G., de la Cruz, A.A., Dionysiou, D.D., Intermediates and reaction pathways from the degradation of Microcystin-LR with sulfate radicals, Environ.
Sci. Technol., 2010, 44, 7238-7244.
110. Beranek, R., Kisch, H., Surface-modified anodic TiO2 films for visible light photocurrent response, Electrochem. Commun., 2007, 9, 761-766.
111. Song, X.M., Wu, J.M., Yan, M., Photocatalytic and photoelectrocatalytic degradation of aqueous Rhodamine B by low-temperature deposited anatase thin films. Mater. Chem. Phys., 2008, 112, 510-515.