簡易檢索 / 詳目顯示

研究生: 陳偉然
Chen, Wei-Ran
論文名稱: 應用蒙地卡羅決策樹求解突發醫療事件下隨機需求消耗性醫療物資調度問題
Applying the Monte Carlo Decision Tree to Solve the Problem of Stochastic Demand Expendable Medical Supplies in Emergency Events
指導教授: 許靖涵
Hsu, Ching-Han
口試委員: 許榮鈞
Sheu, Rong-Jiun
黃柏嘉
Huang, Po-Chia
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2024
畢業學年度: 113
語文別: 中文
論文頁數: 116
中文關鍵詞: 蒙特卡羅決策樹隨機需求緊急事件資源分配不確定性時間窗約束
外文關鍵詞: Monte Carlo Decision Tree, Stochastic Demand, Emergency Events, Resource Allocation, Uncertainty Optimization, Time Windows Bundle
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究論文旨在開發一種優化不確定需求下資源配置的穩健框架,專注於應對重大突發公共衛生事件期間醫療用品隨機需求的調度問題。採用蒙特卡羅決策樹演算法模型,結合需求不確定性建模、成本預期建模,並引入時間窗約束,實施蒙特卡羅樹搜索中的貪婪策略以增強決策過程,從而優化不確定條件下的資源調度方案。在模型構建方面,以武漢20家定點醫院作為研究案例,模擬了新冠肺炎疫情期間醫療物資的隨機需求情況。基於帶時間窗約束的隨機需求車輛路徑問題,建立了將配送成本和時間成本相結合的目標函數,並引入"提前補貨"策略以避免路徑失效,從而減少因治療點需求大於車輛剩餘物資而產生的額外補貨成本。在數值實驗環節,利用MATLAB軟體對演算法進行編程實現,基於構建的武漢地區案例對模型及演算法進行了驗證。實驗結果顯示,相較於傳統方法,本文提出的結合演算法能夠在處理緊急情況下的資源分配問題時取得更優的表現,特別是在時間窗約束下的隨機需求場景中,顯著提升了醫療物資的調度效率和供應及時性。該研究為應對緊急情況下醫療用品管理提供了結構化的方法論,不僅豐富了該領域的理論基礎,更為面臨隨機需求挑戰的醫療保健系統提供了可增強其準備和回應能力的科學依據及決策支持。


    This research paper aims to develop a robust framework for optimizing resource allocation under uncertain demand, focusing on the scheduling problem of stochastic demand for medical supplies during major public health emergencies. A Monte Carlo decision tree algorithm model is adopted, combining demand uncertainty modeling and expected cost modeling, and introducing time window constraints. A greedy strategy is implemented in the Monte Carlo tree search to enhance the decision-making process, thereby optimizing resource scheduling schemes under uncertain conditions.In terms of model construction, 20 designated hospitals in Wuhan are used as a case study, simulating the stochastic demand for medical supplies during the COVID-19 pandemic. Based on the vehicle routing problem with stochastic demand and time window constraints, an objective function combining delivery cost and time cost is established, and an "early replenishment" strategy is introduced to avoid route failure, thereby reducing additional replenishment costs caused by the treatment point's demand exceeding the vehicle's remaining supplies.In the numerical experiment section, the algorithm is programmed and implemented using MATLAB software, and the model and algorithm are validated based on the constructed Wuhan case study. The experimental results show that, compared to traditional methods, the combined algorithm proposed in this paper can achieve better performance in handling resource allocation problems under emergency situations. Specifically, in stochastic demand scenarios with time window constraints, it significantly improves the scheduling efficiency and timeliness of medical supplies.This study provides a structured methodology for managing medical supplies in emergency situations, enriching the theoretical foundation in this field. It also offers scientific basis and decision support for healthcare systems facing stochastic demand challenges, enhancing their preparedness and response capabilities.

    中文摘要 2 Abstract 3 誌謝 4 目錄 1 圖目錄 3 表目錄 5 第1章 緒論 7 1.1 研究背景 7 1.2 研究目的 11 1.3 研究架構 12 第2章 文獻回顧 14 2.1 突發醫療事件物資調度 15 2.2 車輛路徑問題 15 2.3 隨機需求車輛路徑問題 17 2.4 帶時間窗約束隨機需求車輛路徑問題 19 2.5 隨機需求車輛路徑問題「提前補貨」 21 2.6 蒙地卡羅決策樹算法 22 2.7 回顧小結 23 第3章 模型說明 26 3.1 武漢醫院情況說明 26 3.2 隨機需求 29 3.3 模型架構 33 3.4 成本期望 30 3.5 目標函數與約束條件 31 3.6 懲罰函數 32 3.7 計算示例 33 第4章 研究方法 37 4.1 蒙地卡羅決策樹概述 37 4.2 先排序後分群策略 39 4.3 先排序後分群與先分群後排序計算複雜度比較 45 4.4 先排序後分群-貪心策略-子節點比較策略 49 4.5 先排序後分群-貪心策略-同層最短路徑比較策略 52 4.6 先排序後分群-貪心策略-同層最短路徑比較優化 54 4.7 先排序後分群-同層最短路徑比較結合基因遺傳演算法 55 第5章 實驗結果 58 5.1 算法配置及實驗設置 58 5.2 實驗參數設定 62 5.3 CVRP問題分析 64 5.4 HVRPTW問題分析 73 5.5 真實數據集分析 91 第6章 實驗結論及改進方向 97 6.1 實驗結論 97 6.2 改進方向 99 參考文獻 101 附錄A 演算法流程圖 108 A.1子節點演算法實驗流程圖 108 A.2同層演算法實驗流程圖 110 A.3 MCTGA算法流程图 112 附錄B 縮寫和術語表 115

    1. Bell, D. M. (2004). Public health interventions and SARS spread, 2003. Emerging Infectious Diseases, 10(11), 1900.
    2. Khiabanian, H., Trifonov, V., & Rabadan, R. (2009). Reassortment patterns in Swine influenza viruses. PLOS ONE, 4(10), e7366.
    3. Gire, S. K., Goba, A., Andersen, K. G., Sealfon, R. S., Park, D. J., Kanneh, L., ... & Sabeti, P. C. (2014). Genomic surveillance elucidates Ebola virus origin and transmission during the 2014 outbreak. Science, 345(6202), 1369-1372.
    4. Laventhal, N., Basak, R., Dell, M. L., Diekema, D., Elster, N., Geis, G., ... & Macauley, R. (2020). The ethics of creating a resource allocation strategy during the COVID-19 pandemic. Pediatrics, 146(1).
    5. Bavel, J. J. V., Baicker, K., Boggio, P. S., Capraro, V., Cichocka, A., Cikara, M., ... & Willer, R. (2020). Using social and behavioural science to support COVID-19 pandemic response. Nature Human Behaviour, 4(5), 460-471.
    6. 李雪林. (2011). 淺談醫療消耗性物資的科學管理. 中外醫療, 30(18), 131-132.
    7. 何珊珊, & 費延飛. (2022). 基於疫情演化的應急醫療物資調度優化研究. Operations Research and Fuzziology, 12, 767.
    8. Wang, X., Liang, Z., & Zhu, K. (2021). Markov decision model of emergency medical supply scheduling in public health emergencies of infectious diseases. International Journal of Computational Intelligence Systems, 14(1), 1155-1169.
    9. Zhu, X., Wen, Z., Regan, D., & Zhu, W. (2023). Research on the forecast of emergency supplies for major public health emergencies.
    10. Da-jiang, P., Chun-ming, Y., & Ling-wei, Z. (2022). An improved grasshopper optimization algorithm in application of bi-objective location problem for emergency materials centers. Operations Research and Management Science, 31(4), 14.
    11. Zhi-zhu, L., Zheng, W., Dong-mei, G., & Yu-long, C. (2020). A Multi-objective Robust Optimization Model for Emergency Logistics Center Location. Operations Research and Management Science, 29(5), 74.
    12. Bélanger, V., Ruiz, A., & Soriano, P. (2019). Recent optimization models and trends in location, relocation, and dispatching of emergency medical vehicles. European Journal of Operational Research, 272(1), 1-23.
    13. Bi, H., Li, J., & Song, Y. (2022). Analysis of logistics network reliability in public health emergencies. Journal of Transport Geography, 100(4), 32-47.
    14. Li, X., & Li, Y. (2012). A model on emergency resource dispatch under random demand and unreliable transportation. Systems Engineering Procedia, 5, 248-253.
    15. Liu, J., Bai, J., & Wu, D. (2021). Medical supplies scheduling in major public health emergencies. Transportation Research Part E: Logistics and Transportation Review, 154, 102464.
    16. Alizadeh, K., Makui, A., & Paydar, M. M. (2020). Optimizing heterogeneous fleet routing in disaster relief logistics. Journal of Cleaner Production, 275, 123670.
    17. 鄒志雲, 宋程, & 虢向陽. (2008). 基於模擬退火的應急物流路徑優化研究. 中國管理科學, 16(5), 89-95.
    18. 程碧榮, 趙曉波, & 秦進. (2016). 應急物資配送的車輛路徑問題研究. 工業工程與管理, 21(2), 34-41.
    19. Huang, X., & Song, L. (2018). An emergency logistics distribution routing model for unexpected events. Annals of Operations Research, 269, 223-239.
    20. Chen, J., Wu, S., Yang, J., Cong, G., & Li, G. (2020). A two-stage decision model for logistics route optimization under uncertainty. Complexity, 2020, Article ID 4820732.
    21. Shang, W.-L., Chen, J., Bi, H., Sui, Y., Chen, Y., & Yu, H. (2021). Impacts of COVID-19 pandemic on logistics and supply chains: A big-data analysis. Applied Energy, 285, 116429.
    22. Rezaei-Malek, M., Tavakkoli-Moghaddam, R., Cheikhrouhou, N., & Taheri-Moghaddam, A. (2016). Multi-objective relief pre-positioning in disaster management. Transportation Research Part E: Logistics and Transportation Review, 93, 485-509.
    23. Haghi, M., Ghomi, S. M. T. F., & Jolai, F. (2017). Developing a robust multi-objective model for pre/post disaster times under uncertainty in demand and resource. Journal of Cleaner Production, 154, 188-202.
    24. Bruni, M., Beraldi, P., & Khodaparasti, S. (2018). Fast heuristic routing in post-disaster humanitarian logistics. Transportation Research Procedia, 30, 304-313.
    25. Wang, Y., Zhang, F., Liu, C., & Sun, M. (2021). Routing optimization for emergency logistics using Markov decision process. Operations Research Letters, 49(6), 831-837.
    26. Shirazi, H., Kia, R., & Ghasemi, P. (2021). A stochastic bi-objective simulation–optimization model for plasma supply chain in case of COVID-19 outbreak. Applied Soft Computing, 112, 107725.
    27. Jagtenberg, C. J., van den Berg, P. L., & van der Mei, R. D. (2017). Benchmarking online dispatch algorithms for emergency medical services. European Journal of Operational Research, 258(2), 715-725.
    28. Oyola, J., Arntzen, H., & Woodruff, D. L. (2018). The stochastic vehicle routing problem, a literature review, part I: Models. EURO Journal on Transportation and Logistics, 7(3), 193-221.
    29. Chang, M. S. (2005). A vehicle routing problem with time windows and stochastic demands. Journal of the Chinese Institute of Engineers, 28(5), 783-794.
    30. Marinakis, Y., Iordanidou, G.-R., & Marinaki, M. (2013). Particle swarm optimization for the vehicle routing problem with stochastic demands. Applied Soft Computing, 13(4), 1693-1704.
    31. Zhang, C., Lam, J., & Chen, J. (2016). A comparative analysis of preventive and reactive replenishment strategies for emergency logistics. Computers & Industrial Engineering, 94, 97-108.
    32. · Elatar, M., Abouelmehdi, K., & Riffi, A. (2023). Solving heterogeneous fleet electric vehicle routing problems with time windows. Transportation Research Part E: Logistics and Transportation Review, 168, 102863.
    33. · Ornato, J. P. (2009). The science of emergency medical dispatch. Emergency Medical Journal, 26(12), 884-887.
    34. · Simpson, N., & Hancock, P. G. (2009). Fifty years of operations research and emergency response. Operations Research, 57(1), 1-15.
    35. · Lei, H., Laporte, G., & Guo, B. (2011). The capacitated vehicle routing problem with stochastic demands. Transportation Science, 45(4), 481-494.
    36. · Lenstra, J. K., & Kan, A. R. (1981). Complexity of vehicle routing and scheduling problems. Networks, 11(2), 221-227.
    37. · Nguyen, V. A., Jiang, J., Ng, K. M., & Teo, K. M. (2016). Vehicle routing problem with time windows under uncertainty. Annals of Operations Research, 244(1), 399-422.
    38. · Xu, S.-H., Liu, J.-P., Zhang, F.-H., Wang, L., & Sun, L.-J. (2015). Combining genetic algorithm and particle swarm optimization for the vehicle routing problem with time windows. Journal of the Operational Research Society, 66(9), 1464-1478.
    39. · Iswari, T., & Asih, A. M. S. (2018). Comparative study of genetic algorithm and particle swarm optimization for solving the capacitated vehicle routing problem. International Journal of Applied Engineering Research, 13(24), 17135-17141.
    40. · Konstantakopoulos, G. D., Gayialis, S. P., & Kechagias, E. P. (2022). A review of vehicle routing problem algorithms and their applications. Computers & Industrial Engineering, 167, 108017.
    41. · Juan, A. A., Keenan, P., Martí, R., McGarraghy, S., Panadero, J., Carroll, P., & Oliva, D. (2023). A review of heuristics in stochastic optimization. Computers & Operations Research, 149, 105008.
    42. · Sadati, S. A., Zaukeri Getabi, P., & Rabbani, M. (2024). Multi-objective modeling for sustainable solid waste management. Journal of Environmental Management, 336, 117619.
    43. · Wang, Q., & Nie, X. (2022). Stochastic programming model for emergency supply planning. Transportation Research Part E: Logistics and Transportation Review, 163, 102720.
    44. · Gendreau, M., Laporte, G., & Séguin, R. (1996). Stochastic vehicle routing. European Journal of Operational Research, 88(1), 3-12.
    45. · Minis, I., & Tatarakis, A. (2011). Single vehicle routing with predefined customer order under stochastic demands. Computers & Operations Research, 38(11), 1590-1599.
    46. · Vincent, F. Y., Redi, A. P., Hidayat, Y. A., & Wibowo, O. J. (2017). Simulated annealing algorithm for mixed vehicle routing problems. Applied Soft Computing, 58, 79-92.
    47. · Christiansen, C. H., & Lysgaard, J. (2007). A branch-and-price algorithm for the capacitated vehicle routing problem with stochastic demands. Journal of the Operational Research Society, 58(3), 309-318.
    48. · Clarke, G., & Wright, J. W. (1964). Scheduling of vehicles from a central depot to a number of delivery points. Operations Research, 12(4), 568-581.
    49. · Cong, W., & Yu, W. (2020). Model and algorithm for location of regional emergency material reserve site in typhoon scenarios. Natural Hazards, 103(1), 89-104.
    50. · Dantzig, G. B., & Ramser, J. H. (1959). The truck dispatching problem. Management Science, 6(1), 80-91.
    51. · Dror, M., Laporte, G., & Louveaux, F. V. (1993). Vehicle routing with stochastic demands and restricted failures. Journal of Operational Research, 44(1), 34-44.
    52. · Elatar, S., Abouelmehdi, K., & Riffi, M. E. (2023). The vehicle routing problem in the last decade: Variants, taxonomy and metaheuristics. Transportation Research Part E: Logistics and Transportation Review, 175, 102942.
    53. · Florio, A. M., Hartl, R. F., Minner, S., & Salazar-González, J.-J. (2021). A branch-and-price algorithm for the vehicle routing problem with stochastic demands. Transportation Science, 55(3), 560-580.
    54. · Stewart Jr, W. R., & Golden, B. L. (1983). Stochastic vehicle routing: A comprehensive approach. European Journal of Operational Research, 14(4), 357-368.
    55. · Su, S., & Shih, C.-L. (2003). Modeling an emergency medical services system using computer simulation. Simulation Modelling Practice and Theory, 11(5-6), 543-556.
    56. · Świechowski, M., Godlewski, K., Sawicki, B., & Mańdziuk, J. (2023). Monte Carlo tree search: A review of recent modifications and applications. Artificial Intelligence Review, 56(2), 185-203.
    57. Abdo, A., Edelkamp, S., & Lawo, M. (2016). Nested rollout policy adaptation for optimizing vehicle selection in complex VRPs. 2016 IEEE 41st Conference on Local Computer Networks Workshops (LCN Workshops),
    58. Afshar-Nadjafi, B., & Afshar-Nadjafi, A. (2017). A constructive heuristic for time-dependent multi-depot vehicle routing problem with time-windows and heterogeneous fleet. Journal of king saud university-Engineering sciences, 29(1), 29-34.
    59. Alinaghian, M., Ghazanfari, M., Norouzi, N., & Nouralizadeh, H. (2017). A novel model for the time dependent competitive vehicle routing problem: Modified random topology particle swarm optimization. Networks and Spatial Economics, 17, 1185-1211.
    60. Alizadeh, M., Makui, A., & Paydar, M. M. (2020). Forward and reverse supply chain network design for consumer medical supplies considering biological risk. Computers & Industrial Engineering, 140, 106229.
    61. Arivalagan, R. (2019). Logistics network optimization in distributing critical medical supplies for a pharmaceutical company. Int. J. Recent Technol. Eng, 8(3), 7767-7770.
    62. Balcik, B. (2017). Site selection and vehicle routing for post-disaster rapid needs assessment. Transportation research part E: logistics and transportation review, 101, 30-58.
    63. Balcik, B., Beamon, B. M., & Smilowitz, K. (2008). Last mile distribution in humanitarian relief. Journal of intelligent transportation systems, 12(2), 51-63.
    64. Barletta, C., Garn, W., Turner, C., & Fallah, S. (2023). Hybrid fleet capacitated vehicle routing problem with flexible Monte–Carlo Tree search. International Journal of Systems Science: Operations & Logistics, 10(1), 2102265.
    65. Berhan, E., Beshah, B., Kitaw, D., & Abraham, A. (2014). Stochastic vehicle routing problem: A literature survey. Journal of Information & Knowledge Management, 13(03), 1450022.
    66. Bernardo, M., Du, B., & Pannek, J. (2021). A simulation-based solution approach for the robust capacitated vehicle routing problem with uncertain demands. Transportation Letters, 13(9), 664-673.
    67. Bertsimas, D. J. (1992). A vehicle routing problem with stochastic demand. Operations research, 40(3), 574-585.
    68. Bi, H., Shang, W.-L., Chen, Y., Yu, K., & Ochieng, W. Y. (2022). An incentive based road traffic control mechanism for covid-19 pandemic alike emergency preparedness and response. IEEE Transactions on Intelligent Transportation Systems, 23(12), 25092-25105.
    69. Buxey, G. (1979). The vehicle scheduling problem and Monte Carlo simulation. Journal of the Operational Research Society, 30(6), 563-573.
    70. Cao, S., Liao, W., & Huang, Y. (2021). Heterogeneous fleet recyclables collection routing optimization in a two-echelon collaborative reverse logistics network from circular economic and environmental perspective. Science of the Total Environment, 758, 144062.
    71. Cazenave, T., Lucas, J.-Y., Kim, H., & Triboulet, T. (2020). Monte Carlo vehicle routing. ATT at ECAI 2020,
    72. Davis, D. P., Garberson, L. A., Andrusiek, D. L., Hostler, D., Daya, M., Pirrallo, R., Craig, A., Stephens, S., Larsen, J., & Drum, A. F. (2007). A descriptive analysis of Emergency Medical Service Systems participating in the Resuscitation Outcomes Consortium (ROC) network. Prehospital Emergency Care, 11(4), 369-382.
    73. De, M., & Giri, B. (2020). Modelling a closed-loop supply chain with a heterogeneous fleet under carbon emission reduction policy. Transportation research part e: logistics and transportation review, 133, 101813.
    74. Dror, M., Laporte, G., & Trudeau, P. (1989). Vehicle routing with stochastic demands: Properties and solution frameworks. Transportation Science, 23(3), 166-176.
    75. Edelkamp, S., Gath, M., Greulich, C., Humann, M., Herzog, O., & Lawo, M. (2016). Monte-Carlo tree search for logistics. Commercial Transport: Proceedings of the 2nd Interdiciplinary Conference on Production Logistics and Traffic 2015,
    76. Fan, H., Zhang, Y., Tian, P., Lv, Y., & Fan, H. (2021). Time-dependent multi-depot green vehicle routing problem with time windows considering temporal-spatial distance. Computers & Operations Research, 129, 105211.
    77. Goel, R., Maini, R., & Bansal, S. (2019). Vehicle routing problem with time windows having stochastic customers demands and stochastic service times: Modelling and solution. Journal of Computational Science, 34, 1-10.
    78. He, Z., Qin, X., Xie, Y., & Guo, J. (2018). Service location optimization model for improving rural emergency medical services. Transportation Research Record, 2672(32), 83-93.
    79. Juan, A., Faulin, J., Grasman, S., Riera, D., Marull, J., & Mendez, C. (2011). Using safety stocks and simulation to solve the vehicle routing problem with stochastic demands. Transportation Research Part C: Emerging Technologies, 19(5), 751-765.
    80. Koç, Ç., Bektaş, T., Jabali, O., & Laporte, G. (2016). Thirty years of heterogeneous vehicle routing. European Journal of Operational Research, 249(1), 1-21.
    81. Kumar, S. N., & Panneerselvam, R. (2012). A survey on the vehicle routing problem and its variants.
    82. Lai, D. S., Demirag, O. C., & Leung, J. M. (2016). A tabu search heuristic for the heterogeneous vehicle routing problem on a multigraph. Transportation research part e: logistics and transportation review, 86, 32-52.
    83. Laporte, G., Musmanno, R., & Vocaturo, F. (2010). An adaptive large neighbourhood search heuristic for the capacitated arc-routing problem with stochastic demands. Transportation Science, 44(1), 125-135.
    84. Lau, Y.-y., Jiamian, Z., Ng Adolf, K., & Panahi, R. (2020). Implications of a pandemic outbreak risk: A discussion on China’s emergency logistics in the era of coronavirus disease 2019 (COVID-19). Journal of International Logistics and Trade, 18(3), 127-135.
    85. Liu, A., Li, Z., Shang, W.-L., & Ochieng, W. (2023). Performance evaluation model of transportation infrastructure: Perspective of COVID-19. Transportation Research Part A: Policy and Practice, 170, 103605.
    86. Mańdziuk, J., & Nejman, C. (2015). Uct-based approach to capacitated vehicle routing problem. Artificial Intelligence and Soft Computing: 14th International Conference, ICAISC 2015, Zakopane, Poland, June 14-18, 2015, Proceedings, Part II 14,
    87. Messaoud, E. (2023). A chance constrained programming model and an improved large neighborhood search algorithm for the electric vehicle routing problem with stochastic travel times. Evolutionary Intelligence, 16(1), 153-168.
    88. Ong, H., Ang, B., Goh, T., & Deng, C. (1997). A vehicle routing and scheduling problem with time windows and stochastic demand constraints. Asia-Pacific Journal of Operational Research, 14(1), 1.
    89. Pandelis, D. G., Kyriakidis, E., & Dimitrakos, T. D. (2012). Single vehicle routing problems with a predefined customer sequence, compartmentalized load and stochastic demands. European Journal of Operational Research, 217(2), 324-332.
    90. Park, H., Son, D., Koo, B., & Jeong, B. (2021). Waiting strategy for the vehicle routing problem with simultaneous pickup and delivery using genetic algorithm. Expert Systems with Applications, 165, 113959.
    91. Pillac, V., Gendreau, M., Guéret, C., & Medaglia, A. L. (2013). A review of dynamic vehicle routing problems. European Journal of Operational Research, 225(1), 1-11.
    92. Sarrut, D., Baudier, T., Borys, D., Etxebeste, A., Fuchs, H., Gajewski, J., Grevillot, L., Jan, S., Kagadis, G. C., & Kang, H. G. (2022). The OpenGATE ecosystem for Monte Carlo simulation in medical physics. Physics in Medicine & Biology, 67(18), 184001.
    93. Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., & Lanctot, M. (2016). Mastering the game of Go with deep neural networks and tree search. nature, 529(7587), 484-489.
    94. Taillard, É. D. (1999). A heuristic column generation method for the heterogeneous fleet VRP. RAIRO-Operations Research, 33(1), 1-14.
    95. Tan, K. C., Cheong, C. Y., & Goh, C. K. (2007). Solving multiobjective vehicle routing problem with stochastic demand via evolutionary computation. European Journal of Operational Research, 177(2), 813-839.
    96. Tan, S.-Y., & Yeh, W.-C. (2021). The vehicle routing problem: State-of-the-art classification and review. Applied Sciences, 11(21), 10295.
    97. Tatarakis, A., & Minis, I. (2009). Stochastic single vehicle routing with a predefined customer sequence and multiple depot returns. European Journal of Operational Research, 197(2), 557-571.
    98. Von Neumann, J., & Ulam, S. (1951). Monte carlo method. National Bureau of Standards Applied Mathematics Series, 12(1951), 36.
    99. Wang, Q., & Hao, Y. (2023). Routing optimization with Monte Carlo Tree Search-based multi-agent reinforcement learning. Applied Intelligence, 53(21), 25881-25896.
    100. Wang, Q., & Nie, X. (2022). A stochastic programming model for emergency supply planning considering transportation network mitigation and traffic congestion. Socio-Economic Planning Sciences, 79, 101119.
    101. Wang, Y., Lu, X., Song, Y., Feng, Y., & Shen, J. (2022). Monte Carlo Tree Search improved Genetic Algorithm for unmanned vehicle routing problem with path flexibility. Advances in Production Engineering & Management, 17(4).
    102. Xu, Z., Elomri, A., Pokharel, S., & Mutlu, F. (2019). A model for capacitated green vehicle routing problem with the time-varying vehicle speed and soft time windows. Computers & Industrial Engineering, 137, 106011.
    103. Yan, L., & Zheng, P. (2020). Study on vehicle routing optimization of cold chain logistics with soft time window under stochastic demand. UPB Sci. Bull, 82.
    104. Yang, W.-H., Mathur, K., & Ballou, R. H. (2000). Stochastic vehicle routing problem with restocking. Transportation Science, 34(1), 99-112.
    105. Yu, Y., Wang, S., Wang, J., & Huang, M. (2019). A branch-and-price algorithm for the heterogeneous fleet green vehicle routing problem with time windows. Transportation Research Part B: Methodological, 122, 511-527.
    106. Zarouk, Y., Mahdavi, I., Rezaeian, J., & Santos-Arteaga, F. J. (2022). A novel multi-objective green vehicle routing and scheduling model with stochastic demand, supply, and variable travel times. Computers & Operations Research, 141, 105698.
    107. Zhang, J. (2021). Modern Monte Carlo methods for efficient uncertainty quantification and propagation: A survey. Wiley Interdisciplinary Reviews: Computational Statistics, 13(5), e1539.
    108. Zhang, J., Lam, W. H., & Chen, B. Y. (2016). On-time delivery probabilistic models for the vehicle routing problem with stochastic demands and time windows. European Journal of Operational Research, 249(1), 144-154.
    109. Zhang, Z., Ji, B., & Yu, S. S. (2023). An adaptive tabu search algorithm for solving the two-dimensional loading constrained vehicle routing problem with stochastic customers. Sustainability, 15(2), 1741.
    110. Zheng, J.-g., Yang, Q., & Chen, S.-l. (2023). Research on the Distribution of Emergency Supplies during the COVID-19 Epidemic. Complexity, 2023.
    111. Zhu, L., Cao, J., Gu, J., & Zheng, Y. (2020). Dynamic emergency supply distribution considering fair mitigation of victim suffering. Systems Engineering-Theory And Practice, 40(09), 2427-2437.
    112. 陳倬, & 佘廉. (2006). 基於脆弱性分析的城市物流系統安全性研究. 中國管理科學(z1), 816-821.
    113. 程碧榮, 趙曉波, & 秦進. (2016). 考慮供應不足的應急物流車輛路徑優化模型及算法. Application Research of Computers/Jisuanji Yingyong Yanjiu, 33(6).
    114. 胡曉偉, 宋浪, 楊濱毓, & 王健. (2020). 重大突發公共衛生事件下城市應急醫療物資優化調度研究. 中國公路學報, 33(11), 55.
    115. 趙建有, 韓萬裏, 鄭文捷, & 趙陽. (2020). 重大突發公共衛生事件下城市應急醫療物資配送. 交通運輸工程學報, 20(3), 168-177.
    116. 鄒志雲, 宋程, & 虢向陽. (2008). 基於灰色理論的應急物流最優路徑選擇
    117. SEN-CROWE, Brendon, et al. A closer look into global hospital beds capacity and resource shortages during the COVID-19 pandemic. Journal of Surgical Research, 2021, 260: 56-63.
    118. RAIS, Abdur; VIANA, Ana. Operations research in healthcare: a survey. International transactions in operational research, 2011, 18.1: 1-31.
    119. CRÉPUT, Jean-Charles, et al. Dynamic vehicle routing problem for medical emergency management. Self Organizing Maps-Applications and Novel Algorithm Design, 2011, 233-250.
    120. CHEN Feng, DING Wen-long, YE Yi-peng, WANG Hua. Optimal Coordination Model of Medical Commodities in the Initial Stage of the Outbreak of Public Health Events[J]. China Journal of Highway and Transport, 2020, 33(11): 65-72.
    121. VOLLAND, Jonas, et al. Material logistics in hospitals: A literature review. Omega, 2017, 69: 82-101.
    122. Luo, Jia, et al. "Optimization models and solving approaches in relief distribution concerning victims’ satisfaction: A review." Applied Soft Computing (2023): 110398.

    QR CODE