研究生: |
鄭慧萱 Huei-hsuan Cheng |
---|---|
論文名稱: |
神經元樹突小刺細胞質中蛋白質動態分佈機制之研究 A MECHANISTIC STUDY OF THE DYNAMIC LOCALIZATION OF CYTOPLASMIC PROTEINS IN DENDRITIC SPINES |
指導教授: |
張兗君
Yen-Chung Chang |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 生命科學系 Department of Life Sciences |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 英文 |
論文頁數: | 124 |
中文關鍵詞: | 樹突小刺 、後突觸質密區 、細胞骨架蛋白 |
外文關鍵詞: | dendritic spine, postsynaptic density, cytoskeletal proteins |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
A dendritic spine is a small membranous protrusion that extends from a dendrite and forms the postsynaptic half of an asymmetric synapse in the CNS. Most asymmetric synapses convey the excitatory information between neurons, and the function and structure of excitatory synapses are highly plastic under the influence of their activities. Virtually all excitatory synapses have a specialized postsynaptic electron-dense structure, called postsynaptic density (PSD), underneath the postsynaptic membrane, and the PSD contains receptors, signal transducing proteins, scaffold proteins and cytoskeletal proteins. This thesis consists of three parts. In the first part, I report a study of the mechanism regulating the localization of various cytoplasmic proteins in dendritic spines. This mechanism is dependent upon a dynamic microfilament cytoskeleton and sensitive to the mobilization of internal calcium stores and cold. The second part of this thesis describes the identification of the heavy chain of cytoplasmic dynein (cDHC) as a major component of the PSD fraction. The finding that both dynein heavy and intermediate chains are enriched in the PSD fraction and cDHC in dendritic spines raise the possibilities that cytoplasmic dynein may play structural and functional roles in the postsynaptic terminal. In the third part, I report the design and implementation of a temperature-controlling system for the use of observing live cells maintained on glass coverslip with an up-right confocal or epi-fluorescence microscope. Together, those findings and technological innovations will help to reveal the molecular mechanisms underlying the structure/function relationships of excitatory synapses and the morphological plasticity of dendritic spines.
A dendritic spine is a small membranous protrusion that extends from a dendrite and forms the postsynaptic half of an asymmetric synapse in the CNS. Most asymmetric synapses convey the excitatory information between neurons, and the function and structure of excitatory synapses are highly plastic under the influence of their activities. Virtually all excitatory synapses have a specialized postsynaptic electron-dense structure, called postsynaptic density (PSD), underneath the postsynaptic membrane, and the PSD contains receptors, signal transducing proteins, scaffold proteins and cytoskeletal proteins. This thesis consists of three parts. In the first part, I report a study of the mechanism regulating the localization of various cytoplasmic proteins in dendritic spines. This mechanism is dependent upon a dynamic microfilament cytoskeleton and sensitive to the mobilization of internal calcium stores and cold. The second part of this thesis describes the identification of the heavy chain of cytoplasmic dynein (cDHC) as a major component of the PSD fraction. The finding that both dynein heavy and intermediate chains are enriched in the PSD fraction and cDHC in dendritic spines raise the possibilities that cytoplasmic dynein may play structural and functional roles in the postsynaptic terminal. In the third part, I report the design and implementation of a temperature-controlling system for the use of observing live cells maintained on glass coverslip with an up-right confocal or epi-fluorescence microscope. Together, those findings and technological innovations will help to reveal the molecular mechanisms underlying the structure/function relationships of excitatory synapses and the morphological plasticity of dendritic spines.
Abe K., Chisaka O., van Roy, F., Takeichi, M. (2004) Stability of dendritic spines and synaptic contacts is controlled by αN-catenin. Nat. Neurosci. 7, 357-363.
Ackermann M., Matus A. (2003) Activity- induced targeting of profiling and stabilization of dendritic spine morphology. Nat. Neurosci. 6, 1194-1200.
Allison D. W., Gelfand V. I., Spector I., Craig A. M. (1998) Role of actin in anchoring postsynaptic receptors in cultured hippocampal neurons: differential attachment of NMDA versus AMPA receptors. J. Neurosci. 18, 2423-2436.
Allison D. W., Chervin A. S., Gelfand V. I., Craig A. M. (2000) Postsynaptic scaffolds of excitatory and inhibitory synapses in hippocampal neurons: maintenance of core components independent of actin filaments and microtubules. J. Neurosci. 20, 4545-4554.
Aon M. A., Gomez-Casati D. F., Iglesias A. A., Cortassa S. (2001) Ultrasensitivity in (supra) molecularly organized and crowded environments. Cell Biol. Int. 25, 1091-1099.
Bloodgood B. L., Sabatini B. L. (2005) Neuronal activity regulates diffusion across the neck of dendritic spines. Science 310, 866-869.
Brewer G. J., Torricelli J. R., Evege E. K., Price, P. J. (1993) Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination. J. Neurosci. Res. 35, 567-576.
Caceres A., Payne M. R., Binder L. I., Steward O. (1983) Immunocytochemical localization of actin and microtubule-associated protein MAP2 in dendritic spines. Proc. Natl. Acad. Sci. USA 80, 1738-1742.
Cheng H. H., Liu S. H., Lee H. C., Lin Y. S., Huang Z. H., Hsu C. I., Chen Y. C., Chang Y. C. (2006) Heavy Chain of cytoplasmic dynein is a major component of the postsynaptic density fraction. J. Neurosci. Res. 84, 244-254.
Chicurel M. E., Harris K. M. (1992) Three-dimensional analysis of the structure and composition of CA3 branched dendritic spines and their synaptic relationships with mossy fiber boutons in the rat hippocampus. J. Comp. Neurol. 325, 169-182.
Colbran R. J. (2004) Targeting of calcium/calmodulin-dependent protein kinase Ⅱ. Biochem. J. 378, 1-16.
Dillon C., Goda Y. (2005) The actin cytoskeleton: integrating form and function at the synapse. Annu. Rev. Neurosci. 28, 25-55.
Ellis R. J. (2001) Macromolecular crowding: obvious but underappreciated. Trends Biochem. Sci. 26, 597-604.
Fifkova E., Delay R. J. (1982) Cytoplasmic actin in neuronal processes as a possible mediator of synaptic plasticity. J. Cell Biol. 95, 345-350.
Fischer M., Kaech S., Knutti D., Matus, A. (1998) Rapid actin-based plasticity in dendritic spines. Neuron 20, 847-854.
Frco A., Lansman J. B. (1990) Stretch-sensitive channels developing muscle cells from a mouse cell line. J. Physiol. 427, 361-380.
Garcia R. A. G., Vasudevan K., Buonanno A. (2000) The neuregulin receptor ErbB4 interacts with PDZ-containing proteins at neuronal synapses. Proc. Natl. Acad. Sci. USA 97, 3596-3601.
Gray E. G. (1959) Axo-somatic and axo-dendritic synapses of the cerebral cortex: an electron microscope study. J. Anat. 93, 420-433.
Harris J. B., Vater R., Wilson M., Cullen M. J. (2003) Muscle fibre breakdown in venom-induced muscle degeneration. J. Anat. 202, 363-372.
Hering H., Sheng M. (2003) Activity-dependent redistribution and essential role of cortactin in dendritic spine morphogenesis. J. Neurosci. 23, 11759-11769.
Hollmann M., Heinemann S. (1994) Cloned glutamate receptors. Annu. Rev. Neurosci. 17, 31-108.
Huang Y. Z., Won S., Ali D. W., Wang Q., Tanowitz M., Du Q. S., Pelkey K. A., Yang D. J., Xiong W. C., Salter M. W., Mei L. (2000) Regulation of neuregulin signaling by PSD-95 interacting with ErbB4 at CNS synapses. Neuron 26, 443-455.
Huang Z. H., Cheng H. H., Wu H. I., Tseng S. H., Chang Y. C. (2006) “Studying the temperature-dependent events of live cells under confocal and epi-fluorescence microscopy using a solid-state heating/cooling system” in Microscopy Book Series titled "Modern Research and Educational Topics in Microscopy".
Hudmon A., Schulman H. (2002) Neuronal Ca2+/calmodulin-dependent protein kinase Ⅱ: the role of structure and autoregulation in cellular function. Annu. Rev. Biochem. 71, 473-510.
Irie M., Hata Y., Takeuchi M., Ichtchenko K., Toyoda A., Hirao K., Takai Y., Rosahl T. W., Sudhof T. C. (1997) Binding of neuroligin to PSd-95. Science 277, 1511-1515.
Kernedy M. B. (2000) Signal-processing machines at the postsynaptic density. Science 290, 750-754.
Koch C., Zador A. (1993) The function of dendritic spines; devices subserving biochemical rather than electrical compartmentalization. J. Neurosci. 13, 413-422.
Korkotian E., Segal M. (1999) Release of calcium from stores alters the morphology of dendritic spines in cultured hippocampal neurons. Proc. Natl. Acad. Sci. USA 96, 12068-12072.
Landis D. M., Reese T. S. (1983) Cytoplasmic organization in cerebellar densritic spines. J. Cell Biol. 97, 1169-1178.
Lin C. H., Espreafico E. M., Mooseker M. S., Forscher P. (1996) Myosin drives retrograde F-actin flow in neuronal growth cones. Neuron 16, 769-782.
Luby-Phelps K., Taylor D. L. (1988) Subcellular compartmentalization by local differentiation of cytoplasmic structure. Cell Motil. Cytoskeleton 10, 28-37.
Nagerl U. V., Eberhorn N., Cambridge S. B., Bonhoeffer T. (2004) Bidirectional activity-dependent morphological plasticity in hippocampal neurons. Neuron 44, 759-767.
Naruse K., Sokabe M. (1993) Involvement of streth-activated ion channels in Ca2+ mobilization to mechanical streth in endothelial cells. Am. J. Physiol. 264, C1037-1044.
Nimchinsky E. A., Sabatini B. L., Svoboda K. (2002) Structure and function of dendritic spines. Annu. Rev. Physiol. 64, 313-353.
Okamoto K., Nagai T., Miyawaki A., Hayashi Y. (2004) Rapid and persistent modulation of actin dynamics regulates postsynaptic reorganization underlying bidirectional plasticity. Nat. Neurosci. 7, 1104-1112.
Orth J. D., McNiven M. A. (2003) Dynamin at the actin-membrane interface. Curr. Opin. Cell Biol. 15, 31-39.
Ouyang Y., Wong M., Capani F., Rensing N., Lee C. S., Liu Q., Neusch C., Martone M. E., Wu J. Y., Yamada K., Ellisman M. H., Choi D. W. (2005) Transient decrease in F-actin may be necessary for translocation of proteins into dendritic spines. Eur. J. Neurosci. 22, 2995-3005.
Peters A., Palay S. L., Webster H. D. (1991) In: The fine structure of the nervous system, New York, Oxford and Toronto, Oxford University Press.
Provance D. W., McDowall A., Marko M., Luby-Phelps K. (1993) Cytoarchitecture of size-excluding compartments in living cells. J. Cell Biol. 106, 565-577.
Rafelski S. M., Theriot J. A. (2004) Crawling toward a unified model of cell motility: spatial and temporal regulation of actin dynamics. Annu. Rev. Biochem. 73, 209-239.
Robison A. J., Bass M. A., Jiao Y., MacMillan L. B., Carmody L. C., Bartlett R. K., Colbran R. J. (2005) Multivalent interactions of calcium/calmodulin-dependent protein kinase Ⅱ with the postsynaptic density proteins NR2B, Densin-180, and α-actinin-2. J. Biol. Chem. 280, 35329-35336.
Ryu J., Liu L., Wong T. P., Wu D. C., Burette A., Weinberg R., Wang Y. T., Morgan S. (2006) A critical role for myosin IIB in dendritic spine morphology and synaptic function. Neuron 49, 175-182.
Sabatini B. L., Maravall M., Svoboda K. (2001) Ca2+ signaling in dendritic spines. Curr. Opin. Neurobiol. 11, 349-356.
Schulman H. (2004) Activity-dependent regulation of calcium/calmodulin-dependent protein kinase Ⅱ localization. J. Neurosci. 24, 8399-8403.
Segev I., Rall W. (1998) Excitable dendrities and spines: earlier theoretical insights elucidate recent direct observation. Trends Neurosci. 21, 453-460.
Sharp A. H., McPherson P. S., Dawson T. M., Aoki C., Campbell K. P., Snyder S. M. (1993) Differential immunohistochemical localization of inositol 1,4,5-triphosphate- and ryanodine-sensitive Ca2+ release channels in rat brain. J. Neurosci. 13, 3051-3053.
Shpetner H. S., Vallee R. B. (1989) Identification of dynamin, a novel mechanochemical enzyme that mediates interactions between microtubules. Cell 59, 421-432.
Shepherd G. M. (1990) The synaptic organization of the brain, 3rd ed. Oxford University Press, New York Oxford.
Smart F. M., Halpain S. (2000) Regulation of dendritic spine stability. Hippocampus 10, 542-554.
Sorra K. E., Harris K. M. (2000) Overview on the structure, composition, function, development, and plasticity of hippocampal dendritic spines. Hippocampus 10, 501-511.
Spacek J., Harris K. M. (1997) Three-dimensional organization of smooth endoplasmic reticulum in hippocampal CA1 dendrites and dendritic spines of the immature and mature rat. J. Neurosci. 17, 190-203.
Star E. N., Kwiatkowski D. J., Murthy V. N. (2002) Rapid turnover of actin in dendritic spines and its regulation by activity. Nat. Neurosci. 5, 239-246.
Tada T., Sheng M. (2006) Molecular mechanisms of dendritic spine morphogenesis. Curr. Opin. Neurobiol. 16, 95-101.
Takahashi R., Watanabe H., Zhang X. X., Kakizawa H., Hayashi H., Ohno R. (1997) Roles of inhibitors of myosin light chain kinase and tyrosine kinase on cation influx in agonist-stimulated endothelial cells. Biochem. Biophys. Res. Commun. 235, 657-662.
Tashiro A., Yuste R. (2003) Structure and molecular organization of dendritic spines. Histol. Histopathol. 38, 773-784.
Toni N., Buchs P. -A., Nikonenko I., Bron C. R., Muller D. (1999) LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite. Nature 402, 421-425.
Watt F., Harris H. (1980) Microtubule-organizing centres in mammalian cells in culture. J. Cell Sci. 44, 103-121.
Weiss M., Elsner M., Kartberg F., Nilsson T. (2004) Anomalous subdiffusion is a measure for cytoplasmic crowding in living cell. Biophys. J. 87, 3518-3524.
Wilson C. J., Groves P. M., Kitai S. T., Linder J. C. (1983) Three-dimensional structure of dendritic spine in the rat neostriatum. J. Neurosci. 3, 383-398.
Yang S. N., Tang Y. G., Zucker R. S. (1999) Selective induction of LTP and LTD by postsynaptic [Ca2+]i elevation. J. Neurophysiol. 81, 781-787.
Yang X. C., Sachs F. (1989) Block of stretch-activated ion channels in Xenopus oocytes by gadolinium and calcium ions. Science 243, 1068-1071.
Zhang W., Benson D. L. (2000) Development and molecular organization of dendritic spines and their synapses. Hippocampus 10, 512-526.
Zhou Q., Homma K. J., Poo M. (2004) Shrinkage of dendritic spines associated with long-term depression of hippocampal synapses. Neuron 44, 749-757.
Zicha D., Dobbie I. M., Holt M. R., Monypenny J., Soong D. Y. H., Gray C., Dunn G. A. (2003) Rapid actin transport during cell protrusion. Science 300, 142-145.
Zorrilla S., Hink M. A., Visser A. J., Lillo M. P. (2006) Translational and rotational motions of proteins in a protein crowded environment. Biophys. Chem. 125, 298-305.