簡易檢索 / 詳目顯示

研究生: 洪晧偉
Hung, Hau-Wei
論文名稱: 奈米晶矽應用於共振腔發光元件之研究
Study of Nanocrystal Silicon Resonant-Cavity Light-Emitting Device
指導教授: 李明昌
Lee, Ming-Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2010
畢業學年度: 99
語文別: 中文
論文頁數: 97
中文關鍵詞: 奈米晶矽共振腔
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 利用量子侷限的效應可使矽成為發光材料,而近年來以矽作為發光元件的研究日益增加,本論文討論奈米晶矽的電激發光現象並設計製作面射型之共振結構,使得以矽為發光元件的出光強度增加及光譜半高寬窄化的現象。其中,奈米晶矽是以電漿化學氣相沉積系統所製備,改變製成氣體SiH4及N2O的流量比沉積出富含矽之氧化矽,再以真空高溫退火的方式使矽析出形成奈米晶矽,作為主動發光層,其光致發光和電激發光的波峰位置皆為600奈米,光譜半高寬約為200奈米左右。而面射型共振腔結構是以金薄膜和矽與二氧化矽交互堆疊的布拉格反射鏡所構成,其原理相似於Fabry-Perot,再控制薄膜金的厚度,使之不僅作為反射鏡並也成為元件的出光層。而根據Rsoft軟體的時域有限差分法(FDTD)模擬以及實驗量測結果,可知藉由微調金的膜厚使得共振腔發光元件的光強度提升、共振波長和光譜半高寬的改變,若與無共振腔結構的奈米晶矽發光元件相比較,具共振腔結構的元件光譜強度約強六倍,光譜之半高寬窄化了約七倍,從奈米晶矽發光光譜半高寬的215奈米窄化為30奈米。研究證實共振結構可應用於矽發光元件並可提高發光強度以及窄化光譜純度。


    摘要…………………………………………………………………………………..Ⅰ Abstract……………………………………………………………………………...Ⅱ 致謝…………………………………………………………………………….........Ⅲ 目錄…………………………………………………………………………….........IV 第一章 緒論…………………………………………………………………………1 1.1 前言………………………………………………………………………...1 1.2 研究動機…………………………………………………………………...4 1.3 論文架構…………………………………………………………………...4 第二章 理論背景…………………………………………………………………....5 2.1 發光二極體………………….……………………………………………..5 2.2 共振腔發光元件……………………………. ……………………………7 2.2-1 共振腔發光元件簡介…………………………………………………7 2.2-2 共振腔發光二極體的特性……………………………………………8 2.3 反射鏡…………………………………………………………………….15 2.3-1 單層膜反射…………………………………………………………..15 2.3-2 多層膜反射…………………………………………………………..17 2.4 奈米晶矽………………………………………………………………….18 2.4-1 奈米晶矽發光機制…………………………………………………..18 2.4-2 量子侷限效應………………………………………………………..21 2.4-3 奈米晶矽之能階分裂………………………………………………..24 第三章 元件設計………………………………………...………….…………..…26 3.1 元件結構示意…………………………………………………………….26 3.2 元件模擬設計…………………………………………………………….27 3.3 模擬結果………………………………………………………………….30 第四章 元件製作流程…………………….…………………….………………..42 4.1 共振腔發光元件製作流程………………….……………………………42 4.2 共振腔發光元件製作流程說明……………………………………….…46 第五章 實驗結果與討論……………………………………………………………51 5.1 表面形態量測…………………………………………………………….51 5.2 電極及DBR反射層光學特性量測……………………...………………59 5.3 SiOx光學特性量測……………………………………………...……….64 5.4 奈米晶矽電激發光特性量測…………………………………….………75 第六章 結論與未來展望……………………………………………………..……..91 6.1 結論……………………………………………………………………….91 6.2 未來展望…………………………………………………………………93 參考文獻…………………………………………………………………………..…95

    [1] D. A.B. Miller, “Silicon sees the light,” Nature, vol. 378 (1995)
    [2] Di Liang and John E. Bowers, “Recent progress in lasers on silicon,” Nature Photonics, vol. 4 (2010)
    [3] L. T. Canham , “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett., vol. 57, NO. 10 (1990)
    [4] Z. H. Lu, et al. “Quantum confinement and light emission in SiO2/Si superlattices,” Nature, vol. 378 (1995)
    [5] G. Dehlinger, et al., “Intersubband Electroluminescence from Silicon-Based Quantum Cascade Structures,” Science , vol. 290, NO. 5500 (2000)
    [6] R. J. Walters, et al. “Field-effect electroluminescence in silicon nanocrystals,” Nature Materials, vol. 4 (2009)
    [7] G. R. Lin, et al., “Oxygen defect and Si nanocrystal dependent white-light and near-infrared electroluminescence of Si-implanted and plasma-enhanced chemical-vapor deposition-grown Si-rich SiO2,” J. Appl. Phys. ,vol. 97 (2005)
    [8] S. Prezioso, et al., “Electrical conduction and electroluminescence in nanocrystalline silicon-based light emitting devices,” J. Appl. Phys. ,vol. 104 (2008)
    [9] E.F. Schubert, et al., “Resonant cavity light-emitting diode,” Appl. Phys. Lett. ,vol. 60 (1992)
    [10] E. F. Schubert, et al., “Giant enhancement of luminescence intensity in Er-doped Si/SiO2 resonant cavities,” Appl. Phys. Lett. ,vol. 61 (1992)
    [11] 史光國, “半導體發光二極體及固體照明,” 全華圖書 (2005)
    [12] Danaë Delbeke, et al. , ” High-Efficiency Semiconductor Resonant-Cavity
    Light-Emitting Diodes: A Review,” IEEE Journal on selected topics in Quantum Electronics, vol. 8, NO. 2 (2002)
    [13]E. F. Schubert, “Light-Emitting Diodes,” Cambridge (2006)
    [14] K. J. Kuhn, "Laser Engineering," Prentice Hall (1997)
    [15] H. Benisty, H. De Neve, and C. Weisbuch, ”Impact of Planar Microcavity Effects
    on Light Extraction—Part I: Basic Concepts and Analytical Trends,” IEEE Journal of Quantum Electronics, vol. 34, NO. 9 (1998)
    [16] E. F. Schubert, et al. ”Giant enhancement of luminescence intensity in Er-doped Si/SiO2 resonant cavities,” Appl. Phys. Lett., vol. 61, No. 12 (1992)
    [17] 陳金鑫,黃孝文 ”有機電激發光材料與元件,” 五南文化事業 (2006)
    [18] 李正中, “薄膜光學與鍍膜技術,” 藝軒出版社 (2009)
    [19]B. E. A. Saleh, M. C. Teich. “Fundamentals of Photonics,”Wiley-Interscience (2007)
    [20] M. L. Majewski, et al., “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Applied Optics , vol. 37, No. 22 (1998)
    [21] K. M. Medicus, et al., “Interferometric measurement of phase change on
    reflection,” Applied Optics , vol. 46, No. 11 (2007)
    [22] L. Pavesi, Z. Yuan, et al., ”Silicon Nanocrystals as an Enabling Material for Silicon Photonics ,” Proceedings of the IEEE , vol. 97, No. 7 (2009)
    [23] J. Linnros, “Nanocrystals brighten transistors,” nature materials , vol. 4 (2005)
    [24] R. J. Walters, “Silicon Nanocrystals for Silicon Photonics,” Thesis of California Institute of Technology Pasadena, California (2007)
    [25] G. Ledoux, et al,. “Photoluminescence properties of silicon nanocrystals as a function of their size,” Physical Review B ,vol. 62,No. 23 (2000)
    [26] F. Voigt “Optoelectronic properties of size-selected silicon nanocrystals,” docserver.bis.uni-oldenburg.de (2006)
    [27] C. Delerue, G. Allan, and M. Lannoo, “Theoretical aspects of the luminescence of porous silicon,” Physical Review B,vol. 48,No. 15 (1993)
    [28] C. T. Lee, et al., “Electroluminescence emission of crystalline silicon nanoclusters grown at a low temperature,” Nanotechnology , vol. 18 , NO. 27 (2007)
    [29] Medicus, Kate M, et al., “The Effect of Phase Change on Reflection on Optical Measurements,” Proceedings of the SPIE, vol. 5879 (2005)
    [30] G. R. Lin, C. J. Lin and C. T. Lin, “Low-plasma and high-temperature PECVD grown silicon-rich SiOx film with enhanced carrier tunneling and light emission,” Nanotechnology 18 (2007)
    [31] N. Daldosso, G. Das, S. Larcheri, et al., “Silicon nanocrystal formation in annealed silicon-rich silicon oxide films prepared by plasma enhanced chemical vapor deposition,” Journal of Applied Physics, vol. 101, NO. 113510, (2007)
    [32]L. Ding, et al.,”Dielectric functions of SiO2 film embedded with silicon nanocrystals, “Journal of Crystal Growth, vol.288, pp.87–91 (2006)
    [33] B. Garrido, et al.,” Correlation between structural and optical properties of Si nanocrystals embedded in SiO2: The mechanism of visible light emission,” Applied Physics Letters, vol. 77, NO. 20 (2000)
    [34] B. Averboukh, R. Huber, K. W. Cheah, et al.” Luminescence studies of a Si/SiO2 superlattice,” Journal of Applied Physics, vol.92, NO.7 (2002)
    [35] G. R. Lin and L. J. Chou, et, al., “Oxygen defect and Si nanocrystal dependent white-light and near-infrared electroluminescence of Si-implanted and plasma-enhanced chemical-vapor deposition-grown Si-rich SiO2,” Journal of Applied Physics, vol. 97 (2005)
    [36] G. Ledoux, et al., “Photoluminescence properties of silicon nanocrystals as a function of their size,” Physical Review B ,vol. 62,No. 23 (2000)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE