簡易檢索 / 詳目顯示

研究生: 李惠菁
Hui-Ching Li
論文名稱: 多壁奈米碳管/聚乙烯醇高分子複合材料合成與物性分析研究
Synthesis and Physical Properties Analysis of Multi-Walled Carbon Nanotube/PVA Composites
指導教授: 徐文光
Wen-Kuang Hsu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 65
中文關鍵詞: 多壁奈米碳管聚乙烯醇複合材料高分子
外文關鍵詞: MWCNT, PVA, composites, polymer
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗利用四線量測以獲得較可信賴的數據(其中PVA高分子導電率約為文獻值的2.5倍)。並驗證不同濃度多壁奈米碳管下的MWCNT/PVA複合材料,其導電率可合適地利用percolation理論解釋;即在此複合材料中的導電率有明顯從絕緣區跳躍到導電區的現象,亦因為MWCNT的高寬長比,MWCNT/PVA複合材料呈現出二維性質的導電網絡。
    在室溫量測下,可得知電子傳遞主要為CNT間的躍遷(hopping)模式。其中加入硫酸鐵的MWCNT/PVA複合材料中,配位物陽離子提供第二個導電網絡減少電子間hopping所需的位能障礙。MWCNT/PVA複合材料的電磁波遮蔽效應及機械性質和導電率的關係密切,均與碳管濃度相關。

    (註:MWCNT為多壁奈米碳管;PVA為聚乙烯醇)


    總目錄 中文摘要...........................................................................................................................I 英文摘要..........................................................................................................................II 總目錄.............................................................................................................................III 圖目錄.............................................................................................................................VI 表目錄..........................................................................................................................VIII 第一章 實驗動機與目的.....................................................................................1 第二章 文獻回顧….................................................................................................2 2-1奈米碳管的結構與特性.............................................................................................2 2-2奈米碳管的基本電性...................................................................................………..3 2-3奈米碳管的合成.........................................................................................................5 2-3-1石墨電擊直流電弧放電法.............................................................................5 2-3-2化學氣相沉積流動法.....................................................................................6 2-3-3雷射蒸發法.....................................................................................................7 2-4高分子及聚乙烯醇(PVA)簡介..................................................................................8 2-4-1高分子.............................................................................................................8 2-4-2聚乙烯醇(PVA)...............................................................................................9 2-5四點探針原理及四線量測.......................................................................................10 2-5-1四點探針原理...............................................................................................10 2-5-1-1塊材材料....................................................................................................10 2-5-1-2薄膜材料....................................................................................................11 2-5-2四線量測.......................................................................................................13 2-6 Percolation理論........................................................................................................14 2-7纖維填充物強化機制...............................................................................................18 2-7-1強化機制.......................................................................................................18 2-7-2奈米碳管與其複合材料的機械性質...........................................................23 2-8電磁遮蔽效應原理...................................................................................................25 2-9紅外光譜基本原理...................................................................................................28 第三章 實驗步驟與結果討論........................................................................34 3-1實驗藥品與器材.......................................................................................................34 3-2實驗步驟...................................................................................................................35 3-3實驗流程...................................................................................................................37 3-4-1實驗一(電性量測) 實驗結果與討論…..............................................................38 3-4-1-1 MWCNT/PVA試片...................................................................................38 3-4-1-2 、 、 、 /MWCNT/PVA試片..............41 3-4-2實驗二(電磁遮蔽效應量測) 實驗結果與討論..................................................46 3-4-3實驗三(拉伸試驗) 實驗結果與討論..................................................................49 3-4-4實驗四(磁性試驗) 實驗結果與討論..................................................................53 3.4.5實驗五(傅立葉紅外光譜量測) 實驗結果與討論...............................................56 3.4.5.1 /MWCNT/PVA複合材料試片...............................................56 3.4.5.2 /MWCNT/PVA複合材料試片.................................................57 3.4.5.3 /MWCNT/PVA複合材料試片.......................................................58 3.4.5.4 /MWCNT/PVA複合材料試片........................................................59 第四章 結論..............................................................................................................61 參考資料…...............................................................................................................62 圖目錄 圖2.1.1 CNT螺旋性向量表示示意圖............................................................................3 圖2.1.2 CNT的結構(a) 扶椅型(b) 鋸齒.......................................................................3 圖2.2.1 CNT二維及三維骨架........................................................................................4 圖2.2.2 石墨晶格及倒晶格以及能階............................................................................5 圖2.3.1電弧放電法示意圖..............................................................................................6 圖2.3.2 化學氣相沉積流動觸媒法................................................................................7 圖2.3.3 雷射蒸發法示意圖............................................................................................7 圖2.5.1 四點探針量測示意圖......................................................................................10 圖2.5.2 塊材材料中四點探針量測示意圖..................................................................10 圖2.5.3 薄膜材料中四點探針量示意圖......................................................................11 圖2.5.4 薄膜材料中四線量測示意圖..........................................................................12 圖2.5.5 四線量測有效面積示意圖..............................................................................12 圖2.7.1 複合材料應力和填充物的體積比率關係......................................................21 圖2.7.2 沿填充物方向上的軸向力關係圖..................................................................22 圖2.7.3 CNT在不同情況下的變形形狀......................................................................24 圖2.7.4 CNT-高分子複合材料斷裂階段......................................................................24 圖2.8.1 電磁波入射屏蔽材料後行為..........................................................................26 圖2.9.1 硫酸根的配位情況..........................................................................................31 圖3.2 10 wt % MWCNT/PVA複合材料試片...............................................................36 圖3.3 實驗流程.............................................................................................................37 圖3.4.1.1 不同CNT濃度( )與 關係.................................................................38 圖3.4.1.2 在導電區中啟動值附近 與 關係..........................................39 圖3.4.1.3 在絕緣區中啟動值附近 與 關係…......................................39 圖3.4.1.4 不同濃度 或 與 關係...........................................................40 圖3.4.2.1 不同MWCNT濃度下的電磁波屏蔽效益..................................................46 圖3.4.2.2 導電率與電磁波遮蔽效應關係...................................................................46 圖3.4.3.1 MWCNT體積濃度和斷裂強度關係............................................................49 圖3.4.3.2 MWCNT重量濃度和楊氏係數關係............................................................50 圖3.4.3.3 10wt % MWCNT/PVA斷裂面(X20K).........................................................50 圖3.4.3.4 10 wt % MWCNT/PVA (X20K)....................................................................51 圖3.4.3.5 10 wt % MWCNT/PVA (X10K)....................................................................51 圖3.4.4.1 MWCNT/PVA試片在130K~300K的EPR曲線..........................................53 圖3.4.4.2 1 wt % /MWCNT/PVA試片在130K~300K的EPR曲線...........53 圖3.4.5.1 MWCNT/PVA及 /MWCNT/PVA的FTIR................................56 圖3.4.5.2 MWCNT/PVA及 /MWCNT/PVA的FTIR.........................................57 表目錄 表3.4.1.1 不同濃度MWCNT/PVA複合材料的電阻率與導電率.............................38 表3.4.1.2 不同濃度 /MWCNT/PVA複合材料的電阻率與導電率..........41 表3.4.1.3 不同濃度 /MWCNT/PVA複合材料的電阻率與導電率................41 表3.4.1.4 不同濃度 /MWCNT/PVA複合材料的電阻率與導電率..................42 表3.4.1.5不同濃度 /MWCNT/PVA複合材料的電阻率與導電率..........42 表3.4.2 在不同MWCNT濃度及不同 濃度下的EMI測試結果..............47 表3.4.3在溫度攝氏二十度且濕度為六十五,MWCNT/PVA複合材料的機械性質.....................................................................................................................................49 表3.4.4.1在130K~300K,MWCNT/PVA的自旋密度.................................................53 表3.4.4.2在130K~300K,1 wt % /MWCNT/PVA的自旋密度..................53 表3.4.5.1 MWCNT/PVA及 /MWCNT/PVA FTIR的峰波數....................56 表3.4.5.2 MWCNT/PVA及 /MWCNT/PVA FTIR的峰波數......................58 表3.4.5.3 MWCNT/PVA及 /MWCNT/PVA FTIR的峰波數...........................59 表3.4.5.4 MWCNT/PVA及 /MWCNT/PVA FTIR的峰波數.............................60

    [1]陳亞群, “多壁奈米碳管填充之導電高分子材料電磁波屏蔽效能研究”, 國立清華大學材料科學與工程研究所碩士論文, (2007)
    [2] 張雅筑, “常壓下以電暈方式製備奈米碳管或奈米結構”, 國立清華大學材料科學與工程研究所碩士論文, (2007)
    [3] E. T. Thostenson, Z. Ten, T. W. Chou, Compos. Sci. Technol. 61, 1899 (2001)
    [4]高分子材料 張文能 編著
    [5] J. Fournier, G. Boiteux, G. Seytre, G. Marichy, Synth. Met. 84, 839 (1997)
    [6]J. N. Coleman, S. Curran, A. B Dalton, A. P . Davey, B. McCarthy, W. Blau, R. C. Barklie, Phys. Rew. B. 58, R7492 (1998)
    [7]S. P. Li, Y. J. Qin, J. H. Shi, Z. X. Guo, Y. F. Li, D. B. Zhu, Chem. Mater. 17, 130 (2004)
    [8]U. D. Weglikowska, M. Kaempgen, B. Hornbostel, V. Skakalova, J. P. Wang, J. D. Liang, S. Roth, Phys. Stat. Sol. 13, 3440 (2006)
    [9]Z. C. Wu, Z. H. Chen, X. Du, J. M. Logan, J. Sippel , M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, A. G. Rinzler. Science 305, 1273 (2004)
    [10]L. Wang, Z. M. Dang, App. Phy. Lett. 87, 042903 (2005)
    [11]J. T. Wescott, P. Kung, A. Maiti, App. Phys. Lett. 90, 033116 (2007)
    [12]E. Kymakis, G. A. J. Amaratunga, J. Appl. Phys. 99, 084302 (2006)
    [13]M. J. Jiang, Z. M. Dang, H. P. Xu, App. Phys. Lett. 90, 042914 (2007)
    [14]Z. M. Dang, C. W. Nan, D. Xie, Y. H. Zhang, S. C. Tjong, App. Phys. Lett. 85, 97 (2004)
    [15]K. Ahmad, W. Pan, S. L. Shi, App. phys. Lett. 89, 133122 (2006)
    [16]P. dutta, S. Biswas, M. Ghosh, S. K. De, S. Chatterjee, Synth. Met. 122, 455 (2001)
    [17]M. T. Connor, S. Roy, T. A. Ezquerra, F. J. Baltá Calleja, Phys. Rev. B. 57, 2286 (1997)
    [18]B. E. Kilbride, J. N. Coleman, J. Fraysse, P. Fournet, M. Cadek, A. Drury, S. Hutzler, S. Roth, W. J. Blau, J. Appl. Phys. 92, 4024 (2002)
    [19]B. R. Sankapal, K. Setyowati, J. Chen, Appl. Phys. Lett. 91, 173103 (2007)
    [20]P. Bonnet, D. Sireude, B. Garnier, O. Chauvet, Appl. Phys. Lett. 91, 201910 (2007)
    [21] “Introduction to percolation theory”, Taylor&Francris, Dietrich Satauffer (1985)
    [22]H. M. Kim, K. Kim, C. Y. Lee, J. Joo, S. J. Cho, H. S. Yoon, D. A. Pejakovic, J. W. Yoo, A. J. Epstein, Appl. Phys. Lett. 84, 589 (2004)
    [23] S. Feng, B. I. Halperin, P. N. Sen, Phys. Rev. B. 35, 197 (1986)
    [24] B. Q. Wei, R. Spolenak, P. K. Redlich, M. RÜhle, E. Arzt, Appl. Phys. Lett. 74, 3149 (1999)
    [25] P. Sheng, E. K. Sichel, J. I. Gittleman, Phys. Rev. Lett. 40, 1197 (1978)
    [26] “Fiber reinforced composites-materials manufacturing and design”, P. K. Mallick, chapter 3, (1988)
    [27] “Deformation and fracture mechanics of engineering materials”, Fourth Edition, Richard W. Hertzberg, p33~p38 (1996)
    [28] K. T. Lau, C. Gu, D. Hui, Compos. Part. B. 37, 425 (2006)
    [29] J. N. Coleman, W. J. Blau, A. B. Dalton, E. Munoz, S. Collins, B. G. Kim, J. Razai, M. Selvidge, G. Vieiro, R. H. Baughman, Appl. Phys. Lett. 82, 1682 (2003)
    [30] A. Allaoui, S. Bai, H. M. Cheng, J. B. Bai, Comps. Scien. Tech. 62, 1993 (2002)
    [31] C. Wei, Appl. Phys. Lett. 88, 093108 (2006)
    [32] P. M. Ajayan, L. S. Schadler, C. Giannaris, A. Rubio, Adv. Mater. 10, 750 (2000)
    [33] M. M. J. Treacy, T. W. Ebbesen, J. M. Gibson, Nature 381, 678 (1996)
    [34] H. Ye, H. Lam, N. Titchenal, Y. Gogotsi, F. Ko, Appl. Phys. Lett. 85, 1775 (2004)
    [35] H. D. Wanger, O. Lourie, Y. Feldman, R. Tenne, Appl. Phys. Lett. 72, 188 (1997)
    [36] D. Qian. E. C. Dickey, R. Andrews, T. Rantell, Appl. Phys. Lett. 76, 2868 (2000)
    [37] M. Cadek, J. N. Coleman, V. Barron, K. Hedickle, W. J. Blau, Appl. Phys. Lett. 81, 5123 (2002)
    [38] J. Joo, A. J. Epstein, Appl.Phys.Lett. 65, 2278, (1994)
    [39] Z. F. Lui, G. Bai, Y. Huang, Y. F. Ma, F, Du, F. F. Li, T. Y. Guo, Y. S. Chen, Carbon 45, 821 (2007)
    [40] H. L. Wu, C. C. Ma, Y. T. Yang, H. C. Kuan, C. C. Yang, C. L . Chiang, Poly. Phys. 44, 1096 (2006)
    [41] S. J. Han, B. Kim, K. D. Suh, Macromol. Chem. Phys. 208, 377 (2007)
    [42] J. Joo, A. J. Epstein, Appl. Phys. Lett. 65, 2278 (1994)
    [43] Y. l. Yang, M. C. Gupat, K. L. Dudley, R. W. Lawrence, Nano. Lett. 5, 2131 (2005)
    [44] S. Y. Yang, K .Lozano, A. Lomeli, H. D. Foltz, R. Jones, Composites 36, 691 (2005)
    [45] Z. F. Lui, G. Bai, Y. Huang, Y. F. Ma, F. Du, F. F. Li, T. Y. Guo, Y. S. Chen, Carbon 45, 821 (2007)
    [46] M. Kosaka, T.W. Ebbesen, H. Hiura, K. Tanigaki, Chem. Phys. Lett, 225, 161 (1994).
    [47] O. Sumita, A. Fukuda, E. Kuze, J.Appl. Polym. Sci. 26, 1659 (1981).
    [48] 波譜原理及解析, 第二版, 常建華, 董綺功 篇著, 科學出版社, (2007)
    [49] Reciprocal Space of Graphite and Two-Dimensional: Fermi surface reduced to six points, available online: http://www.ceesdekker.net/files/carbonnanotubes.pdf

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE