簡易檢索 / 詳目顯示

研究生: 黃培恩
Huang, Pei-En
論文名稱: 高速矽微環型調變器與鍺光偵測器之設計與分析
Design and Analysis of High Speed Silicon Microring Modulator and Germanium Photodetector
指導教授: 李明昌
Lee, Ming-Chang
口試委員: 謝秉璇
Hsieh, Ping-Hsuan
林銘偉
Lin, Ming-Wei
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 70
中文關鍵詞: 微環形調變器鍺光偵測器矽光子
外文關鍵詞: microring modulators, germanium photodetector, silicon photonics
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究進行矽光微環型調變器和鍺光偵測器的頻寬的近一步提升,基於等效電路模型分析元件電光與光電轉換的行為,再搭配平面螺旋電感在特定頻率產生共振增益,藉此提升轉換效率與頻寬;另外提出高調變線性度雙注入微環型調變器,我們的架構可以調整波導中的相位,實現Fano和Lorentz光頻譜響應,並分析共振波長偏移對線性度的影響。我們量測的SFDR可以超過商用LiNbO3馬赫-曾德爾干涉儀調變器。
    我們模擬的結果,矽光微環型調變器的頻寬從原本的70GHz提升至超過110GHz,而鍺光偵測器的頻寬則從80GHz提升至120GHz,對兩者提升約30GHz的頻寬;雙注入微環型調變器在Fano與Lorentz共振條件下的頻寬分別為54GHz與67GHz,Lorentz和Fano共振微環型調變器在1GHz頻率下的最佳SFDR分別有93.77dB⋅Hz^2/3和104.54dB⋅Hz^4/5。


    This study focuses on further enhancing the bandwidth of silicon microring modulators and germanium photodetectors. Based on an equivalent circuit model, we analyze the electro-optic and optoelectronic conversion behavior of these devices. Additionally, we incorporate a planar spiral inductor to generate resonance gain at specific frequencies, thereby improving conversion efficiency and bandwidth. Furthermore, we propose a high-linearity double-injection microring modulator. Our design allows for phase adjustment within the waveguide to achieve Fano and Lorentz optical spectral responses and investigates the impact of resonance wavelength shifts on linearity. Our measured SFDR exceeds that of commercial LiNbO₃ Mach-Zehnder interferometric (MZM) modulators.
    According to our simulation results, the bandwidth of the silicon photonic microring modulator is increased from 70 GHz to over 110 GHz, while the bandwidth of the germanium photodetector is enhanced from 80 GHz to 120 GHz, achieving an improvement of approximately 30 GHz for both devices. The bandwidth of the double-injection microring modulator under Fano and Lorentz resonance conditions is 54 GHz and 67 GHz, respectively. The SFDR of the Lorentz and Fano resonance microring modulators are 93.77 dB·Hz^2/3 and 104.54 dB·Hz^4/5, respectively.

    摘要 i ABSTRACT ii 致謝 iii 目錄 iv 圖目錄 vi 表目錄 ix 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 2 1.3 論文架構 4 第二章 矽光子被動元件與主動元件 5 2.1 矽光子被動元件 5 2.1.1 矽光波導 5 2.1.2 光柵耦合器 10 2.1.3 多模態干涉耦合器 12 2.1.4 環形共振器 13 2.2 矽光子主動元件 19 2.2.1 熱光效應 19 2.2.2 電光效應 19 2.2.3 電光調變器操作偏壓 21 2.2.4 矽微環型電光調變器 22 第三章 高速電感峰值調變器與光偵測器 27 3.1 微環形調變器等效電路模型 27 3.2 鍺光偵測器等效電路模型 35 3.3 平面螺旋電感器設計 36 3.4 電感增益峰值效應微環光調變器的頻率響應 42 3.5 電感增益峰值效應鍺光偵測器的頻率響應 45 第四章 高調變線性度雙注入微環型調變器 49 4.1 線性度的分析與原理 49 4.2 雙注入微環型調變器的結構與理論 51 4.3 量測結果與分析 57 第五章 結論與未來發展 65 5.1 結論 65 5.2 未來發展 65 參考文獻 67

    [1] M. Sauer, A. Kobyakov, and J. George, "Radio Over Fiber for Picocellular Network Architectures," Journal of Lightwave Technology, vol. 25, no. 11, pp. 3301-3320, 2007/11/01 2007. [Online]. Available: https://opg.optica.org/jlt/abstract.cfm?URI=jlt-25-11-3301.
    [2] L. Chen, J. Chen, J. Nagy, and R. M. Reano, "Highly linear ring modulator from hybrid silicon and lithium niobate," Opt Express, vol. 23, no. 10, pp. 13255-64, May 18 2015, doi: 10.1364/OE.23.013255.
    [3] M. Streshinsky et al., "Highly linear silicon traveling wave Mach-Zehnder carrier depletion modulator based on differential drive," Opt. Express, vol. 21, no. 3, pp. 3818-3825, 2013/02/11 2013, doi: 10.1364/OE.21.003818.
    [4] J. Cardenas et al., "Linearized silicon modulator based on a ring assisted Mach Zehnder inteferometer," Opt Express, vol. 21, no. 19, pp. 22549-57, Sep 23 2013, doi: 10.1364/OE.21.022549.
    [5] S. Chen, G. Zhou, L. Zhou, L. Lu, and J. Chen, "High-Linearity Fano Resonance Modulator Using a Microring-Assisted Mach–Zehnder Structure," Journal of Lightwave Technology, vol. 38, no. 13, pp. 3395-3403, 2020, doi: 10.1109/JLT.2020.2971094.
    [6] O. Bryngdahl, "Image formation using self-imaging techniques*," J. Opt. Soc. Am., vol. 63, no. 4, pp. 416-419, 1973/04/01 1973, doi: 10.1364/JOSA.63.000416.
    [7] A. Yariv, "Critical coupling and its control in optical waveguide-ring resonator systems," IEEE Photonics Technology Letters, vol. 14, no. 4, pp. 483-485, 2002, doi: 10.1109/68.992585.
    [8] A. Yariv, "Universal relations for coupling of optical power between microresonators and dielectric waveguides," Electronics Letters, vol. 36, no. 4, 2000, doi: 10.1049/el:20000340.
    [9] R. J. P. Menéndez, "Fiber-Optic Ring Resonator Interferometer," 2018.
    [10] R. Soref and B. Bennett, "Electrooptical effects in silicon," IEEE Journal of Quantum Electronics, vol. 23, no. 1, pp. 123-129, 1987, doi: 10.1109/jqe.1987.1073206.
    [11] G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, "Silicon optical modulators," Nature Photonics, vol. 4, no. 8, pp. 518-526, 2010, doi: 10.1038/nphoton.2010.179.
    [12] B. Pile and G. Taylor, "Small-signal analysis of microring resonator modulators," Opt Express, vol. 22, no. 12, pp. 14913-28, Jun 16 2014, doi: 10.1364/OE.22.014913.
    [13] J.-M. L. Yoojin Ban1, Byung-Min Yu1, Seong-Ho Cho2, and Woo-Young Choi1, "Small-Signal Frequency Responses for Si Micro-Ring Modulators," 2014, doi: 10.1109/OIC.2014.6886081.
    [14] W. D. Sacher et al., "Coupling modulation of microrings at rates beyond the linewidth limit," Opt. Express, vol. 21, no. 8, pp. 9722-9733, 2013/04/22 2013, doi: 10.1364/OE.21.009722.
    [15] A. Stapleton et al., "Optical phase characterization of active semiconductor microdisk resonators in transmission," Applied Physics Letters, vol. 88, no. 3, 2006, doi: 10.1063/1.2165286.
    [16] M. Shin et al., "A Linear Equivalent Circuit Model for Depletion-Type Silicon Microring Modulators," IEEE Transactions on Electron Devices, vol. 64, no. 3, pp. 1140-1145, 2017, doi: 10.1109/ted.2017.2648861.
    [17] S. Karimelahi and A. Sheikholeslami, "Ring modulator small-signal response analysis based on pole-zero representation," Opt. Express, vol. 24, no. 7, pp. 7585-7599, 2016/04/04 2016, doi: 10.1364/OE.24.007585.
    [18] J. Rhim, Y. Ban, B. M. Yu, J. M. Lee, and W. Y. Choi, "Verilog-A behavioral model for resonance-modulated silicon micro-ring modulator," Opt Express, vol. 23, no. 7, pp. 8762-72, Apr 6 2015, doi: 10.1364/OE.23.008762.
    [19] H.-C. Kao, M.-W. Lin, and M.-C. M. Lee, "Study of Electrical and Optical Peaking of Si Ring Modulators for Tailoring Modulation Band," IEEE Photonics Journal, vol. 15, no. 3, pp. 1-6, 2023, doi: 10.1109/jphot.2023.3278856.
    [20] Y. Shi, D. Zhou, Y. Yu, and X. Zhang, "80  GHz germanium waveguide photodiode enabled by parasitic parameter engineering," Photonics Research, vol. 9, no. 4, 2021, doi: 10.1364/prj.416887.
    [21] G. Wang, T. Tokumitsu, I. Hanawa, K. Sato, and M. Kobayashi, "Analysis of high speed p-i-n photodiode S-parameters by a novel small-signal equivalent circuit model," IEEE Microwave and Wireless Components Letters, vol. 12, no. 10, pp. 378-380, 2002, doi: 10.1109/lmwc.2002.804557.
    [22] J.-M. Lee, S.-H. Cho, and W.-Y. Choi, "An Equivalent Circuit Model for a Ge Waveguide Photodetector on Si," IEEE Photonics Technology Letters, vol. 28, no. 21, pp. 2435-2438, 2016, doi: 10.1109/lpt.2016.2598369.
    [23] C. P. Yue and S. S. Wong, "Physical modeling of spiral inductors on silicon," IEEE Transactions on Electron Devices, vol. 47, no. 3, pp. 560-568, 2000, doi: 10.1109/16.824729.
    [24] G. Radosavljević, A. Marić, L. Živanov, and W. Smetana, "Realization of high quality RF inductors using LTCC technology," in 2011 19thTelecommunications Forum (TELFOR) Proceedings of Papers, 22-24 Nov. 2011 2011, pp. 984-987, doi: 10.1109/TELFOR.2011.6143712.
    [25] A. Ayazi, T. Baehr-Jones, Y. Liu, A. E.-J. Lim, and M. Hochberg, "Linearity of silicon ring modulators for analog optical links," Opt. Express, vol. 20, no. 12, pp. 13115-13122, 2012/06/04 2012, doi: 10.1364/OE.20.013115.
    [26] S. Muping, Z. Lin, R. G. Beausoleil, and A. E. Willner, "Nonlinear Distortion in a Silicon Microring-Based Electro-Optic Modulator for Analog Optical Links," IEEE Journal of Selected Topics in Quantum Electronics, vol. 16, no. 1, pp. 185-191, 2010, doi: 10.1109/jstqe.2009.2030154.
    [27] D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, "Integrated microwave photonics," Laser & Photonics Reviews, vol. 7, no. 4, pp. 506-538, 2013, doi: 10.1002/lpor.201200032.
    [28] B. Razavi, "RF Microelectronics Second Edition," 2012.
    [29] Y. D. Zhang, Y. F. Wu, H. Li, C. Q. Yu, and P. Yuan, "Tunable Fano resonance based on add-drop ring resonator structure," in Symposium on Polymer Optics and Molded Glass Optics - Design, Fabrication, and Materials, San Diego, CA, Aug 29 2016, vol. 9949, BELLINGHAM: Spie-Int Soc Optical Engineering, in Proceedings of SPIE, 2016, doi: 10.1117/12.2237235. [Online]. Available: <Go to ISI>://WOS:000390843700003
    [30] K. Wang, X. Liu, C. Yu, and Y. Zhang, "Tunable Fano resonance in a single-ring-resonator-based add/drop interferometer," Appl Opt, vol. 52, no. 20, pp. 4884-9, Jul 10 2013, doi: 10.1364/AO.52.004884.
    [31] T. Hu et al., "Tunable Fano resonances based on two-beam interference in microring resonator," Applied Physics Letters, vol. 102, no. 1, 2013, doi: 10.1063/1.4773917.
    [32] R. A. Cohen, O. Amrani, and S. Ruschin, "Response shaping with a silicon ring resonator via double injection," Nature Photonics, vol. 12, no. 11, pp. 706-712, 2018, doi: 10.1038/s41566-018-0275-4.
    [33] M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, "Fano resonances in photonics," Nature Photonics, vol. 11, no. 9, pp. 543-554, 2017, doi: 10.1038/nphoton.2017.142.
    [34] K. P. Ho and J. M. Kahn, "Optical frequency comb generator using phase modulation in amplified circulating loop," IEEE Photonics Technology Letters, vol. 5, no. 6, pp. 721-725, 1993, doi: 10.1109/68.219723.
    [35] B. Dingel, N. Madamopoulos, A. Prescod, and R. Madabhushi, "Analytical model, analysis and parameter optimization of a super linear electro-optic modulator (SFDR>130dB)," Optics Communications, vol. 284, no. 24, pp. 5578-5587, 2011, doi: 10.1016/j.optcom.2011.08.030.
    [36] R. A. Cohen, O. Amrani, and S. Ruschin, "Linearized electro-optic racetrack modulator based on double injection method in silicon," Opt Express, vol. 23, no. 3, pp. 2252-61, Feb 9 2015, doi: 10.1364/OE.23.002252.
    [37] A. Hosseinzadeh and C. T. Middlebrook, "Highly linear dual ring resonator modulator for wide bandwidth microwave photonic links," Opt. Express, vol. 24, no. 24, pp. 27268-27279, 2016/11/28 2016, doi: 10.1364/OE.24.027268.
    [38] A. Hosseinzadeh and C. T. Middlebrook, "Linearity optimizations of analog ring resonator modulators through bias voltage adjustments," Optics Communications, vol. 410, pp. 345-349, 2018, doi: 10.1016/j.optcom.2017.10.021.
    [39] K. Al Qubaisi and A. Khilo, Nonlinear distortions in silicon microring resonator filters and their impact on integrated photonic ADCs (SPIE OPTO). SPIE, 2016.
    [40] Q. Zhang et al., "Improving the Linearity of Silicon Ring Modulators by Manipulating the Photon Dynamics," IEEE Photonics Journal, vol. 12, no. 2, pp. 1-10, 2020, doi: 10.1109/jphot.2020.2979917.

    QR CODE