簡易檢索 / 詳目顯示

研究生: 顏偉倫
Yen, Wei-Lun
論文名稱: 建構資料挖礦架構於半導體先進製程導入量產階段的良率提升
Constructing a Data Mining Framework for Semiconductor Yield Enhancement in Ramping-up Advanced Technology
指導教授: 簡禎富
口試委員: 楊志銘
許嘉裕
學位類別: 碩士
Master
系所名稱: 工學院 - 工業工程與工程管理學系
Department of Industrial Engineering and Engineering Management
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 69
中文關鍵詞: 資料挖礦製造智慧良率提升Kruskal–Wallis檢定Random Forest加權最小平方法回歸導入量產先進製程半導體製造
外文關鍵詞: Data Ming, Manufacturing Intelligence, Yield Enhancement, Kruskal–Wallis test, Random Forest, WLS regression, Ramp-up, Advanced Technology, Semiconductor Manufacturing
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 良率提升為半導體製造公司保有競爭能力的核心議題,在導入量產階段,透過資料分析,早期辨識造成良率表現不佳的根本原因,為產品能否及時上市的關鍵。然而,半導製程複雜,生產過程迴流特性頻繁,所蒐集的資料中存在高度的共線性。再加上先進製程特殊的製造特性,站點彼此間存在顯著的交互作用影響,使得主效應不存在或微弱不明顯,多數問題屬於站點間交互作用的特性,或良率低下之現象須由多個變量來解釋,無法透過調整單一變量來提升良率。此外,導入量產階段,可供分析的樣本數相對於可能的影響因子個數是極少的(p>>n),皆使得良率分析極具挑戰。
    本研究聚焦於導入量產階段的良率問題辨別,研究目的為建構一製造智慧之資料挖礦架構於錯誤偵測。三個主要的步驟如下:(1)重要變數篩選:結合Kruskal–Wallis檢定與Random Forest縮減可能的因子個數。適當的維度縮減可以加強分析品質的效率與效度(2)交互作用因子偵測:以加權最小平方法回歸偵測對反應變數具高度解釋能力的可能交互作用站點因子(3)模型建構:透過模型建構來描述因子與反應變數之間的關係。透過本研究架構分析所萃取出的資訊,以提供可能的良率問題線索並且建議可能問題的處理先後順序。本研究以台灣半導體公司之製造現場所蒐集的資料為基礎進行資料模擬與分析,驗證本研究所發展之資料挖礦架構。


    Yield enhancement is a critical factor to maintain competitive ability in semiconductor manufacturing. Early identification of the yield-loss causes for ramp-up stage from data analysis in early stage is the key to shorten the time to market. However, the high col-linearity characterized by the complicated re-work flow of manufacturing process, and complicated interactions between the factors due to the characteristic of advanced process make the analysis more difficult. In addition, number of factors in ramp-up stage is larger than the sample size(p>>n), the yield analysis is a great challenge.
    This study focuses on troubleshooting in the ramp-up stage, and aims to construct a manufacturing intelligence framework for failure detection of data mining. Three main steps as following:(1)key factors screening:to narrow the possible factor by integrating Kruskal–Wallis test and Random Forest. A suitable dimensional reduction to insure the efficient and effective quality of analysis.(2)interaction factors detection:to detect the possible combined factors with high explanation of responses by weighted least square regression.(3)model construction:construct a model to explain the relationship between the factors and the responses. Form the extracted information we can provide the hint of root causes and the suggestion with priority of trouble shooting. At least, research simulates the data based on the real data, collected from a semiconductor foundry company in Taiwan, to validate the proposed data mining framework.

    目錄 i 表目錄 iii 圖目錄 iv 第一章 緒論 1 1.1. 研究背景、動機與重要性 1 1.2. 研究目的 3 1.3. 論文結構 4 第二章 文獻回顧 6 2.1. 半導體製程與資料特性 6 2.1.1半導體製程 6 2.1.2半導體製程資料特性 9 2.1.3半導體量產 11 2.2. 資料挖礦與製造智慧 13 2.2.1 資料挖礦 13 2.2.2 半導體資料挖礦於良率議題之應用 15 2.2.3 半導體資料挖礦與製造智慧(Manufacturing Intelligence;MI) 17 2.3. 決策樹與Random Forest(RF) 18 2.3.1 決策樹 18 2.3.2 Random Forest (RF) 20 2.3.3 Randm Forest的重要變數篩選機制 21 2.4. 統計分析方法 22 2.4.1 Kruskal–Wallis 檢定(KW) 22 2.4.2 權重最小平方法迴歸(Weighted Least Square Regression;WLSR) 23 2.4.3 逐步迴歸 23 第三章 半導體製程資料挖礦架構 26 3.1. 問題定義 28 3.2. 資料準備 30 3.2.1資料取得 30 3.2.2資料清理 30 3.3. 重要變數篩選 31 3.4. 雙變量交互作用因子偵測 33 3.5. 模型建構 34 3.6. 結果解釋與評估 36 3.7. 小結 37 第四章 實證分析 39 4.1. 問題定義與實驗計畫 39 4.2. 資料準備 42 4.2.1資料取得 42 4.2.2資料清理 45 4.3. 重要變數篩選 45 4.4. 雙變量交互作用因子偵測 48 4.5. 模型建構 56 4.6. 結果解釋與評估 58 第五章 結論與未來研究方向 63 參考文獻 64

    王興仁(2002),架構半導體廠新製程移轉與量產管理流程-某半導體廠實證研究,國立清華大學工業工程與工程管理學系碩士論文。
    林大欽(1997),IC封裝業之短期生產排程之探討,國立清華大學工業工程與工程管理學系碩士論文。
    林真真、鄒幼涵(1993),迴歸分析,華太書局,台北。
    林鼎浩(2000),建構半導體製程資料挖礦架構及其實證研究,國立清華大學工業工程與工程管理學系碩士論文。
    李培瑞(2000),半導體製程資料挖礦架構、決策樹分類法則及其實證研究,國立清華大學工業工程與工程管理學系碩士論文。
    簡禎富 、林鼎浩 、彭誠湧、徐紹鐘 (2001),建構半導體晶圓允收測試資料挖礦架構及其實證研究,工業工程學刊 ,第十八卷,第四期,37-48頁。
    簡禎富、李培瑞、彭誠湧(2003),半導體製程資料特徵萃取與資料挖礦之研究,資訊管理學報,第十卷,第一期,63-84頁。
    簡禎富、施義成、林振銘、陳瑞坤(2005),半導體製造技術與管理,清華大學出版社,新竹。
    Anita, P. and Poel, D. V. D. (2008), “Random forests for multiclass classification:random multiNomial logit,” Journal of Expert System with Applications, Vol. 34, pp. 1721-1732.
    Bergeret, F. and Gall, C. L. (2003), “Yield improvement using statistical analysis of process dates,” IEEE Transactions on Semiconductor Manufacturing, Vol. 16(3), pp. 535-541.
    Berry, M. and Linoff, G. (1997), Data Mining Techniques for Marketing, Sales and Customer Support, John Wiley and Sons, New York.
    Berson, A., Smith, S., and Thearling, K. (2000), Building Data Mining Applications for CRM, McGraw Hill, New York.
    Brachman, R. J., Khabaza, T., Kloesgen, W., Piatetsky-Shapiro, G., and Simoudis, E. (1996), “Mining Business DataBase,” Communication of ACM, Vol. 39, No. 11, pp.42- 48.
    Breiman, L. (2001), “Random forest,” Machine Learning, Vol. 45, pp. 5-32.
    Breiman, L., Friedman, J. H., Olshen, R. J., and Stone, C. J. (1984), Classification and Regression Trees, Belmont, California.
    Buckinx, W. and Poel, D. V. D. (2005), “Customer base analysis:partial defection of behaviourally-loyal clients in a non-contractual FMCG retail setting,” European journal of Operational Research, Vol. 64, No. 1, pp. 252-268.
    Chen, L.-F. and Chien, C.-F. (2011), “Manufacturing intelligence for class prediction and rule generation to support human capital decision for high-tech industries,” Flexible Service and Manufacturing Journal.
    Chen, A. and Hong, A. (2010), “Sample-Efficient Regression Trees (SERT) for Semiconductor Yield Loss Analysis,” IEEE Transactions on Semiconductor Manufacturing, Vol. 23, No. 3, pp. 358-369.
    Chien, C.-F., Chen, Y.-J., and Peng, J.-T. (2010), “Manufacturing Intelligence for Semiconductor Demand Forecast based on Technology Diffusiion and Product Life Cycle,” International Journal of Production Economics, Vol. 128, No. 2, pp. 496-509.
    Chien, C.-F. and Hsu, C.-Y. (2011), “UNISON Analysis to Model and Reduce Step-and-Scan Overlay Errors for Semiconductor Manufacturing,” Journal of Intelligence Manufacturing, Vol. 22, No. 3, pp. 399-412.
    Chien, C.-F., Lin, T.-H., Peng, C.-Y., Hsu, S.-C. (2001), “Developing data mining framework and methods for diagnosing semiconductor manufacturing defects and an empirical study of wafer acceptance test data in a wafwe fab,” Journal of Chinese Institute of Industrial Engineers, Vol. 18(4), pp. 37-48.
    Chien, C.-F. (2007), “Made in Taiwan: Shifting Paradigms in high-tech Industries,” Industrial Engineer, Vol. 9, No. 2, pp. 47-49.
    Chien, C.-F., Wang, W.-C., and Chang, J.-C. (2007), “Data mining for yield enhancement in semiconductor manufacturing and an empirical study,” Expert System With Applications, Vol. 33(1), pp. 192-198.
    Daniel, W. W. (1990), Applied nonparametric statistics, (2nd ed.), Boston: PWS-KENT Publishing Company.
    Deboeck, G. and Kohonen, T. Eds(1998), Visual Exploration in Finance with Self-Organizing Maps, Springer-Verlag, London.
    Deng, Y. P., Chen, H. S., Tao, L., Sha, Q. Y., Chen, J., and Tsai, C. J. (2004), “Joint analysis of two microarray gene-expression data sets to select lung adenocarcinoma marker genes,” BMC Bioinformatics, Vol. 5, No. 81, pp. 1-12.
    Fan, C. M., Guo, R. S., Chen, A., Hsu, K. C., and Wei, C. S. (2001), “Data mining fault diagnosis based on wafer acceptance test data and in-line manufacturing data,” IEEE, pp. 171-174.
    Fayyad, U., Piatetsky-Shapiro, G., and Smyth, P. (1996), “The KDD Process for Extracting Useful Knowledge from Volumes of Data ,” Communication of ACM, Vol. 39, No.11, pp.27-34.
    Gandner, M. and Bieker, J. (2000), “Data Mining Solves Tough Semiconductor Manufacturing Problem,” KDD2000 Proceedings of sixth ACM SIGKDD international conference on Knowledge discovery and data mining, Boston, New York.
    Garraffo, F.M. (2004), “Research and development investments and performance in high technology industries: some evidence from semiconductor firms,” Proceedings of the 2000 IEEE International Conference, Vol. 1, pp. 234-239.
    Gandner, M. and Bieker, J. (2000), “Data mining solves tough semiconductor manufacturing problem,” Proceedings of KDD 2000.
    Guy, N., Szilágyi, A., Leslie, C., and Nir, B. T. (2009), “Identification of DNA-binding proteins using structural,” Electrostatic and Evolutionary Features, J. Mol. Biol, Vol. 387, pp.1040-1053.
    Hsu, S.-C. and Chien, C.-F. (2007), “Hybrid Data Ming Approach for Pattern Extraction from Wafer Bin Map to Improve Yield in Semiconductor Manufacturing,” International Journal of Production Economics.
    Hsu, S.-J. (2007), “Design of an Enabling Machanism for Effective Yield Analysis Procedure,” Electrical Engineering Department, National Taiwan University.
    Kleissner, C. (1998), “Data Mining for the Enterprise,” IEEE Proc. 31st Annual Hawaii International Conference on System Sciences, Vol. 7, pp. 295-304.
    Kuo, C.-J., Chien, C.-F., and Chen, J.-D., (2010), “Manufacturing Intelligence to Exploit the Value of Production and Tool Data to Reduce Cycle Time,” IEEE Transactions on Automation Science and Engineering, Vol. 8, No. 1, pp. 103-111.
    Krivda, C. D. (1996), “Data Mining for the Enterprise,” LAN-The Network Solutions Magazine, Vol. 11, No. 5, pp. 42-48.
    Lau, S.-F. and Chen, F.-L. (2004), “A Data Clustering Model for Wafer Yield Loss in Semiconductor Manufacturing,” Journal of Chinese Institute of Industrial Engineers, Vol. 21, No. 4, pp. 328-338.
    Luo, T., Kramer, K., Goldgof, D. B., Hall, L. O., Samson, S., and Remsen, A. (2004),“Recognizing plankton images from the shadow image particle profiling evaluation recorder,” IEEE Transactions on Systems Man and Cybernetics Part B Cybernetics, Vol. 34, No. 4, pp. 1753-1762.
    Mieno, F., Sato, T., Shibuya, Y., Odagiri, K., Tsuda, H., and Take, R. (1999), “Yield improvement using data mining system semiconductor manufacturing,” IEEE international Symposium on Conference Proceedings, pp. 391-394.
    Milne, R., Drummond, M., and Renoux, P. (1998), “Predicting paper making defect on-line using data mining,” Knowledge-Based Systems, Vol. 11, pp. 331-338.
    Pyle, D. (1999), Data Preparation for Data Mining, Morgan Kaufmann Publishers, San Francisco, California.
    Quinlan, J. R. (1986), “Induction of decision tree,” Machine Learning, Vol. 1, No. 3, pp. 81-106.
    Quinlan, J. R. (1993), C4.5: Programs for Machine Learning, Morgan Kaufmann, San Francisco.
    Ryan, T. P. (1989), Statistical Methods for Quality Improvement, New York: Wiley.
    Tsuda, H., Shiri, H., Takagi, O., and Take, R. (2000), “Yield analysis and improvement by reduceing manufacturing fluctuation noise,” ISSM proceeding.
    Verikas, A., Gelzinis, A., and Bacauskiene, M. (2011), “Mining data with random forests:A survey and results of new tests,” Pattern Recognition, Vol. 44, pp. 330-349.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE