簡易檢索 / 詳目顯示

研究生: 陳尚淵
Shang-Yuan Chen
論文名稱: 拋光參數對玻璃基板硬碟片表面特性影響之研究
A Study of Effects of Polishing Parameters on Surface Characteristics and Removal Rate of Glass-Ceramic Based Rigid Disk
指導教授: 林士傑
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2001
畢業學年度: 89
語文別: 中文
論文頁數: 100
中文關鍵詞: 拋光基板表面粗糙度表面波狀度表面平坦度變異術分析
外文關鍵詞: polish, substrate, roughness, waviness, flatness, ANOVA
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來隨著硬碟機記憶容量的需求愈來愈高,硬碟片的製造技術也顯得愈來愈重要了,尤其是在硬碟片拋光製程部份。有愈好的硬碟片拋光後品質,對於提昇硬碟片之資料儲存量是具有極大助益的,因此要如何有效改善拋光後硬碟片的表面特性,將成為值得研究的首要課題。
    在本論文中,將進行玻璃基板硬碟片拋光後表面特性之實驗。實驗中選擇了拋光壓力、上下盤轉速、太陽齒輪轉速、研磨液濃度、拋光墊之硬度種類及其表面溝槽型式作為可控制的拋光參數,並觀察拋光後硬碟片的表面粗糙度、表面波狀度、表面平坦度改善量以及材料移除率,再搭配變異數分析來分析各項拋光參數及其搭配組合對欲觀察項目的影響程度,進而決定著手進行改善拋光後品質的方向。實驗結果顯示藉由拋光參數的調整,可以改善表面粗糙度,表面波狀度以及材料移除率,至於在表面平坦度改善量方面,則拋光之加工步驟所能產生的影響相當有限。


    As the requirement for magnetic rigid disk drive’s data recording was getting higher, disk’s manufacturing technique would be more important, especially the polishing process since with the better surface characteristics, it would be helpful for the increase in data recording in the disk substrates. Therefore, how to improve the surface characteristics of disk substrates in polishing process would become an important topic.
    In this study, experiments are conducted to reveal effects of polishing parameters including rotational speed, applied pressure, slurry concentration, pad type and its groove type on surface characteristics, including surface roughness, waviness, flatness and removal rate when polishing glass-ceramic based rigid disk. Their effects would be analyzed with analysis of variance (ANOVA) to determine which parameters would have significant effect on surface characteristics, and also provide the directions that could improve disk substrate surface characteristics efficiently in polishing process. Experimental Results show that surface roughness and waviness and removal rate could be improved by adjusting the levels of polishing parameters while it has insignificant effect on surface flatness improvement.

    Contents I Figure and Table Captions II Chapter One Introduction 1 Chapter Two Literature Survey 5 2.1 The Polishing Mechanism 5 2.2 Effects of Polishing Parameters on Surface Characteristics 8 2.3 CMP Models 13 2.4 Summary 16 Chapter Three Experimental Design and Experimental Set-up 20 3.1 Experimental Design 20 3.2 Experimental Set-up 21 Chapter Four Experimental Results and Discussions 35 4.1 Surface Roughness 35 4.2 Surface Waviness 49 4.3 Surface Flatness 68 4.4 Removal Rate 78 Chapter Five Conclusions and Recommendation for Future Research 92 Reference 96 Appendix 100

    Ali, I., et al., “Chemical-mechanical polishing of interlayer dielectric: A review,” Solid State Technology, Vol. 37, No. 10, pp.63-70, 1994.
    Bhushan, M., et al., “Chemical-Mechanical Polishing in Semidirect Contact Mode,” Journal of the Electrochemical Society, Vol. 11, No. 11, pp. 3845-3851, 1995.
    Cook, L. M., “Chemical Processed in Glass Polishing,” Journal of Non-Crystalline Solids, Vol. 120, pp.152-171, 1990.
    Desai, M., et al., “Chemical mechanical polishing for planarization in manufacturing environment,” Material Research Society Symposia Proceedings Vol. 337, pp.99-104, 1994.
    DeVor, R. E., et al., “Statistical Quality Design and Control,” Maxwell Macmillan International, 1992.
    Fischer, T. E., “Tribochemistry,” Ann. Rev. Mater. Sci., Vol. 18, pp.303-323, 1988.
    Flaitz, P. L., et al., “Polishing of Substrates,” American Ceramic Society Bulletin, Vol. 73, No. 5, pp.42-45, 1994.
    Grochowski, E., et al., “Future Trends In Hard Disk Drives,” IEEE Transactions on Magnetics, Vol. 32, No. 3, pp.1850-1854, 1996.
    Heinicke, G., “Tribochemistry,” Carl Hanswe Verlag, Munich, Germany, 1984.
    Jiang, M., et al., “On the Chemo-Mechanical Polishing (CMP) of Si3N4 Bearing Balls with Water Based CeO2 Slurry,” Transactions of the ASME, Vol. 120, No. 4, pp.304-312, 1998.
    Jiang, M., et al., “On Chemo-Mechanical Polishing (CMP) of Silicon Nitride (Si3N4) Workmaterial with various abrasives,” Wear, Vol. 220, No. 1, pp.59-71, 1998.
    Karaki-doy, T., et al., “High Grade Precision Polishing Technique by a New Polishing Machine for Chalcone Crystals,” Int. J. Japan Soc. Pre. Eng., Vol. 29, No. 3, pp.217-221, 1995.
    Kelsall, A., “Cerium Oxide as a Route to Acid Free Polishing,” Glass Technology, Vol. 39, No. 1, pp.6-9, 1998.
    Komanduri, R., et al., “Technological Advances in Fine Abrasive Processes,” Annals of the CIRP, Vol. 46, pp.545-596, 1997.
    Liu, C.-W., et al., “Modeling of the Wear Mechanism during Chemical-Mechanical Polishing,” Journal of the Electrochemical Society, Vol. 143, No. 2, pp.716-721, 1996.
    Maaza, M., et al., “Effect of Mechanical Polishing on the Surface Structure of Glasses Studied by Grazing Angle Neutron Reflectrometry,” Optics Communication, Vol. 100, No. 4, pp.220-230, 1993.
    Miller, R. A., et al., “Substrates for Magnetic Hard Disks for Gigabit Recording,” IEEE Transactions on Magnetics, Vol. 32, No. 3, pp.1805-1811, 1996.
    Montogomery, D. C., “Design and Analysis of Experiments,” Fourth Edition, John Wiley & Sons, 1997.
    Mori, Y., et al., “Elastic Emission Machining,” Precision Engineering, Vol. 9, No. 3, pp.123-128, 1987.
    Nakamura, T., et al., “A Bowl Feed and Double Sides Polishing for Silicon Wafer for VLSI,” Bulletin of the Japan Society of Precision Engineering, Vol. 19, No. 2, pp.120-125, 1985.
    Nanz, G., et al., “Modeling of Chemical-Mechanical Polishing: A Review,” IEEE Transactions on Semiconductor Manufacturing, Vol. 8, pp.382-389, 1995.
    Preston, F. W., “The Theory and Design of Plate Glass Polishing,” Journal of the Society of Glass Technology, Vol. 11, pp.214-256, 1927.
    Rabinowicz, E., “On the Mechanism of Polishing with Abrasives,” Wear, Vol. 18, pp.169-170, 1971.
    Rauch, G. C., et al., “Glass-Ceramic Substrates for 1 Gb/in2 and Beyond,” IEEE Transactions on Magnetics, Vol. 32, No. 5, pp.3642-3647, 1996.
    Runnels, S. R., et al., “Modeling the Effect of Polish Pad Deformation on Wafer Surface Stress Distributions during Chemical-Mechanical Polishing,” Dielectric Sci. Technol., pp.110-121, 1993.
    Runnels, S. R., et al., “Tribology Analysis of Chemical-Mechanical Polishing,” Journal of the Electrochemical Society, Vol. 141, No. 6, pp.1698-1701, 1994.
    Runnels, S. R., “Feature-Scale Fluid-Based Erosion Modeling for Chemical-Mechanical Polishing,” Journal of the Electrochemical Society, Vol. 141, No. 7, pp.1900-1904, 1994.
    Shaw, M. C., “Metal Cutting Principles,” Oxford, 1984.
    Shi, F. G., et al., “Modeling of Chemical-Mechanical Polishing with Soft Pads,” Applied Physics A: Materials Science & Processing, Vol. 67, No. 2, pp.249-252, 1998.
    Steigerwald, J. M., et al., “Chemical Mechanical Planarization of Microelectronic Materials,” John Wiley & Sons, 1997.
    Tomozawa, M., “Oxide CMP Mechanisms,” Solid State Technology, Vol. 40, No. 7, pp.169-175, 1997.
    Vora, H., et al., “Mechanochemical Polishing of Silicon Nitride,” Communications of the American Ceramic Society, Vol. 65, p.140-141, 1982.
    Yim, P., et al., “The role of disk surface waviness on baseline instability of MR head,” IEEE Transactions on Magnetics, Vol. 35, No. 2, pp.758-763, 1999.
    Yu, T.-K., et al., “A Statistical Polishing Pad Model for Chemical-Mechanical Polishing,” IEDM Tech. Dig., pp.865~868, 1993.
    Zagari, D. L., “Polishing Parameters and Their Effect on Glass Polish Performance,” Ceramic Engineering and Science Proceeding, Vol. 16, No. 3, pp.302-305, 1995.
    許洲豪, “以田口式實驗設計法探討拋光參數對硬碟片拋光後表面特性之影響”, 國立清華大學碩士論文, 1998.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE