簡易檢索 / 詳目顯示

研究生: 蔡卓翰
John Tsai
論文名稱: 利用分子動力學研究金屬薄膜的沉積與結構變化
Micro-structure and deposition of metal thin film studied by molecular dynamics simulation
指導教授: 蕭百沂
HsiaoPaiYi
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 67
中文關鍵詞: 分子動力學模擬金屬薄膜表面粗糙度基板溫度入射能量晶格錯位
外文關鍵詞: molecular dynamics simulation, incident energy, metal thin film, misfit, roughness, temperature
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著製程技術的進步,薄膜應用也變的廣泛。由於薄膜的性質與薄膜的結構有關,因此深入瞭解製程參數對於薄膜結構的影響,也變得比以往重要。本文利用分子動力學模擬,討論入射能量、晶格匹配度以及基板溫度等製程參數,對於薄膜磊晶成長過程的影響,研究主題包含:(一)側向原子距離、(二)磊晶程度、(三)薄膜覆蓋率、(四)表面粗糙度。研究結果顯示:晶格匹配度是決定薄膜是否能以pseudomorphic 的方式成長的主要關鍵。對FCC的金屬而言,提高入射能量會促使薄膜生長出具有優選方向為(111)的平面,同樣的我們也發現基板溫度提高也會促使薄膜生長出具有優選方向為(111)的平面。對表面粗糙度的研究發現,提高入射能量可以降低薄膜的表面粗糙度並提高覆蓋率,但是入射能量或基板溫度的提高會有一飽和值,當溫度或入射能量超過飽和值時對於表面粗糙度與覆蓋率並沒有再進一步的變化。
    透過深入研究Cu/Ni(100)的系統,我們發現薄膜的表面粗糙度與覆蓋率在基板溫度為600K或入射能量為1eV時會有大幅度的改善;進一步提高溫度與入射能量,對於系統的表面粗糙度與覆蓋率並沒有的改善。但過高的基板溫度或入射能量卻會降低具有(100)優選方向的程度,因此要在(100)的Ni基板,保持同樣具有(100)優選方向的Cu薄膜,基板溫度須約控制在300K,而入射能量則須控制在0.4eV左右,才可以得到良好品質且與基材具有同樣優選方向的薄膜。


    Because of the improvement of processing techniques, the applications of thin film have become more and more wider spread. The properties of the material strongly depend on its structure. As we know, many processing parameters such as incident energy, temperature of substrate, and misfit between film and substrate atoms play an important role in the thin-film deposition. Understanding the relationship between those processing parameters and the structure of thin film is very important. In this article, we investigate (1) lateral distance of film atoms、(2) prefer orientation、(3) roughness、(4) coverage by means of molecular dynamics simulations with Embedded atom method potential. The result shows that the misfit is the most important factor to obtain a pseudomorphic film. The degree of prefer orientation decreases as the temperature is increased. Moreover, the roughness and the coverage of thin film are found to be improved by increasing the incident energy or the substrate temperature. We found that this improvement will saturate at some value if we continue increasing the incident energy or the temperature.
    Further study of Cu/Ni(100) system shows that the roughness and the coverage are both improved at 600K substrate temperature or with incident energy of 1eV. Nevertheless, if we increase further the temperature or the incident energy there will be no significant improvement for the system. Extra high temperature or incident energy, on the other hand, degrades the degree of prefer orientation of substrate. Therefore, to obtain a pseudomorphic thin-film of Cu/Ni(100), the substrate temperature should be controlled at around 300K and the incident energy should be fixed around 0.4eV.

    摘要 I Abstract II 致謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 第一章 簡介 1 1.1薄膜歷史與製程簡介 1 1.2薄膜的成長機制簡介 4 1.3分子動力學模擬薄膜沉積論文回顧 6 1.4研究動機 10 第二章 多體勢能簡介與模型設定 12 2.1勢能函數 12 2.2模擬程式簡介 13 2.3沉積速率 14 2.4模擬的設定 18 第三章 分析方式簡介 24 3.1分析性質簡介 24 V 3.2表面粗糙度的計算 24 3.3覆蓋率 26 3.4.1平面徑向分佈函數 27 3.4.2 利用平面徑向分佈函數定義座落於(100)面、(111) 面以及其他平面的比例 31 3.4.3 計算平面徑向分佈函數 32 第四章 結果與討論 35 4.1.1原子的側向最近鄰間距隨厚度的變化 35 4.1.2側向原子間距與晶格匹配度的變化 37 4.2.1晶格匹配度與優選方向程度的關係 39 4.2.2入射能量對於優選方向的影響 41 4.2.3基板溫度對於優選方向的影響 44 4.3.1 薄膜的成長機制與覆蓋率 47 4.3.2基板溫度對於薄膜覆蓋率的影響 48 4.3.3入射能量對於薄膜覆蓋率的影響 52 4.4.1 薄膜的表面粗糙度 55 4.4.2入射能量對表面粗糙度的影 55 4.4.3基板溫度對表面粗糙度的影 58 第五章 結論與未來方向 60 VI 5.1結論 60 5.2 未來方向 61 參考文獻 63

    65-Nanometer Technology; Intel; http://www.intel.com/technology/silicon/65nm_technology.htm
    Bocquet , F.; Robert, S.; Gauthier, S.; Duvault, J. L.; Surface Science; 1997; 392, 86-102; “On the low-temperature growth of Pb on Cu”
    Bozzolo, G.; Garc□s, J.E.; Progress in Surface Science, 2003, 73, 79-116; ”Atomistic modeling of surface and bulk properties of Cu, Pd and the Cu–Pd system”
    Chen, G.-X.; Zhang, J.-M.; Journal of Molecular Catalysis A: Chemical, 2006, 258, 341-345; “Computer simulation study of self-diffusion in Pd(1 1 1) surface”
    Chocyk, D.; Crystal Research and Technology; 2005, 40, 509–516, “Evolution of stress and structure in Cu thin films”
    CODATA (Committee on Data for Science and Technology), http://www.codata.org/resources/databases/key1.html
    Daw, M.S.; Baskes, M.I.; Physical Review B; 1984; 29, 6443; “Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals”
    Dijken, S. V.; Physical Review Letters, 1999, 82(20), 4038-4041; “Steering-enhanced roughening during metal deposition at grazing incidence”
    Domain, C.; Monnet, G.; Physical Review Letters; 2005; 95, 215506-215509; “Simulation of Screw Dislocation Motion in Iron by Molecular Dynamics Simulations”
    Evans J.W.; Physical Review B; 1991; 43,3897-3905; “Factors mediating smoothness in epitaxial thin-film growth”
    64
    Fang, C.C.; Prasad, V.; Jones, F.; Journal of Vacuum Science & Technology A-Vacuum Surfaces and Films; 1993;11,2778-2789; “Molecular dynamics modeling of microstructure and stresses in sqputter-deposited thin film”
    Garai,J; Computer Coupling of Phase Diagrams and Thermochemistry; 2006; 30, 354-356; “Correlation between thermal expansion and heat capacity”
    How chip are made; Intel; http://www.intel.com/education/makingchips/preparation.htm
    Janssens, K. G. F.; Olmsted, D.; Holm, E.; Foiles, S. M.; Nature materials; 2006; 5,124-127; “Computing the mobility of grain boundaries”
    Lee, S.C.; Hwang N.M.; Yu, B.D.; Kim, D.Y.; Journal of Crystal Growth; 2001; 311-320; ”Molecular dynamics simulation on the deposition behavior of nanometer-sized Au clusters on a Au (0 0 1) surface”
    Lee, S.G.,; Chung, Y.C.; IEEE Transactions on Magnet ice; 2006; 42, 2939-2941; “The incident angle effect of Al adatom on the Growth Morphology of Al/Ni(001) system: Molecular dynamics simulation”
    Liang, X.G.; Sh, B.; Materials Science and Engineering; 2000; 292,198; ” Two-dimensional molecular dynamics simulation of the thermal conductance of superlattices”
    Liu, A.Z.; Lei,S.B.; Surface and Interface Analysis; 2006; 38,166 – 170; “Deposition of densely packed gold film on an alkane derivative monolayer modified graphite surface”
    Lugscheider, E.; Hayn, G. V.; Surface and Coatings Technology; 1999; 116–119, 568–572; ”Simulation of the film growth and film–substrate mixing during the sputter deposition process”
    65
    Marian, J.; Wirth, B.D.; Odette, G.R.; Perlado, J.M.; Computational Materials Science; 2004; 31,347-367; “Cu diffusion in alpha-Fe: determination of solute diffusivities using atomic-scale simulations”
    Moore’s law; Intel; http://www.intel.com/technology/mooreslaw/index.htm
    Ohring, M.; Academic press, “Materials science of thin films”; 2006
    Paniago, R.; Siervo, A.D; Soares,E.A.; Surface Science; 2004; 560,27-34;
    “On the low-temperature growth of Pb on Cu”
    Resende, F.J.; Costa,B.V.; Surface Science; 2001; 481, 54-66; “Molecular dynamics study of the copper cluster deposition on a Cu(010) surface”
    Spearot, D.E; Journal of Engineering Materials and Technology-Transactions of The ASME; 2005; 127, 374-382; “Effect of deformation path sequence on the behavior of nanoscale copper bicrystal interfaces”
    Wang, X.-C.; Jia, Y.; Yao, Q.; Wang, F.; Surface Science; 2004; 551, 179–188; “The calculation of the surface energy of high-index surfacesin metals at zero temperature”
    Zhang, J.-M.; Song, X.-L.; Xu, K.-W.; Journal of Physics and Chemistry of Solids; 2006; 67 , 714–719; “The properties and structures of the mono- and the di-vacancy in Cu crystal”
    Zhang, J.-M.; Song, X.-L.; Xu, K.-W.; Applied Surface Science; 2007; 253, 3785–3788; “Atomistic simulation of the vacancy in Ni (1 1 0) surface”
    66
    Zhang, Q.Y.; Tang, J.Y.; Zhao, G.Q.; Nuclear Instruments and Methods in Physics Research B; 2000; 135, 289-294; “Investigation of the energetic deposition of Au (0 0 1) thin films by molecular-dynamics simulation”

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE