簡易檢索 / 詳目顯示

研究生: 湯泰郎
Tai-Lang Tang
論文名稱: 應用於線型永磁馬達驅動器之定結構滑模定位控制器
A fixed structure sliding mode position controller for linear permanent magnet motor drives
指導教授: 潘晴財
Ching-Tsai Pan
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 112
中文關鍵詞: 線型永磁馬達滑模控制負載擾動估測器
外文關鍵詞: Linear permanent magnet synchronous motors (LPMSM), sliding mode control, load disturbance estimator
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 線型永磁馬達由於本身架構簡單且具有直接驅動、安靜以及高可靠度等特性,近年來已逐漸地應用於工業上各種高精密度的快速定位以改善產量。然而,由於線型永磁馬達性能易受溫度、磁飽和以及負載等環境干擾而影響導致操作性能劣化,失去原先定位控制的優良特性,是故文獻上有提出使用具強健性之可變結構滑模控制以克服此困境,但是傳統可變結構滑模控制具有切跳效應之缺點,因此本論文的主要研究目標即在於運用一簡易定結構滑模控制以設計線型永磁馬達驅動器之強健性定位控制器,避免線型永磁馬達驅動器受參數與負載變動之影響。

    基本上本論文主要的貢獻有以下三點:第一點,針對線型永磁馬達之位置控制設計其滑模定位控制器,不需改變控制器的結構仍可以達到可變結構滑模控制之強健效果,同時消除了傳統可變結構控制之切跳現象。其另外的特點為具有設計簡單、易於實現等優點。第二點,針對所設計之定結構滑模定位控制器輸入項中有一無法掌握之負載推力項,再進一步設計一負載推力估測器,以估測此負載推力項,並將其前饋至定結構滑模定位控制器,以獲得更佳之動態響應。第三點則為利用德州儀器公司新上市之TMS320F2812快速數位訊號處理器完成壹全數位化驅動器,以減少硬體電路之元件數目,增加可靠度,同時方便於維護及修改控制法則。最後並經由該雛型之實驗結果,證實本論文所提之定結構滑模定位控制器確實能達到預期之效果。


    Linear permanent magnet synchronous motors (LPMSM), due to their merits of simple structure, direct drive capability, less noisy and higher reliability, have now been widely applied in various industrial areas for fast and accurate position controls to increase the process output. However, the dynamic performance of a LPMSM is easily affected by the temperature change, magnetic saturation as well as the load disturbances. Hence, robust control such as variable structure sliding mode controls (VSSMC) were proposed in literature to overcome this dilemma. In view of these, the major motivation of this research lies in adapting a simple fixed structure sliding mode control (FSSMC) to design a robust position controller for LPMSM drives.

    Basically, the major contributions of this thesis may be summarized as follows. First, a fixed structure sliding mode controller is proposed for LPMSM drives to achieve the same robust characteristic as that of a conventional VSSMC but without chattering phenomenon. Besides, due to the available closed form solution of the closed system eigenvalues, design and implementation of the proposed controller become very simple and straightforward. Second, in order to further improve the dynamic performance, a load disturbance estimator is also proposed and added to the proposed sliding mode position controller. Finally, a prototype is also constructed by using a high speed digital signal processor, namely TMS320F2812 to simplify the hardware structure. Experimental results show that the proposed fixed structure sliding mode controller can indeed achieve the desired performance.

    摘 要 I 英文摘要 II 誌 謝 III 目 錄 IV 圖 目 錄 VI 表 目 錄 VIII 第一章 緒論 1 1.1研究動機 1 1.2文獻回顧 1 1.3本論文之貢獻 2 1.4本論文之內容概述 3 第二章 線型永磁馬達之動作原理及其數學模型 5 2.1 前言 5 2.2 線型馬達簡介 5 2.3 線型永磁馬達運作原理 10 2.4 線型永磁馬達數學模型 18 第三章 線型永磁馬達之定結構滑模定位控制器 34 3.1 前言 34 3.2 變結構滑模控制原理 35 3.3 定結構滑模控制原理 42 3.4 線型馬達之定結構滑模定位控制器 46 3.5 負載推力擾動估測器 52 3.6模擬結果 59 第四章 實體電路製作與實測結果 65 4.1 前言 65 4.2 硬體系統製作 65 4.3 數位控制器設計 73 4.4 實測結果 77 第五章 結論 87 參考文獻 89 附錄一 數位類比轉換器電路 94 附錄二 DSP程式 96 附錄三 作者與口試委員們合影留念 112

    [1] I. Boldea and S. A. Nasar, Linear Electric Motors : Theory, Design and Practical Applications, Prentice-Hall, New Jersey, 1987.

    [2] I. Boldea and S. A. Nasar, “Linear Electric Actuators and Generators,” IEEE Transactions on Energy Conversion, vol. 14, no. 3, pp. 712-717, 1999.

    [3] J. F. Gieras and Zbigniew J. Piech, Linear Synchronous Motors: Transportation and Automation Systems, CRC Press, New York, 2000.

    [4] P. Pillay and R. Krishnan, “Modelling of permanent magnet motor drives,” IEEE Transactions on Industrial Electronics, vol. 35, no. 4, pp.537-541, 1988.

    [5] P. Pillay and P. Freere, “Literature survey of permanent magnet AC motors and drives,” Conference Record of the Industry Applications Society Annual Meeting of the IEEE 1989, vol. 1, pp. 74-84, 1989.

    [6] T. M. Jahns, "Motion control with permanent-magnet AC machines," Proceedings of the IEEE, vol. 82, no. 8 , pp. 1241-1252, August 1994.

    [7] N. Mohan, T. M. Undeland and W. P. Robins, Power Electronics: Converters, Applications and Design, John Wiley & Sons, New York, 1995.

    [8] S. Ogasawara, M. Nishimura, H. Akagi, A. Nabae and Y. Nakanishi, “A high performance AC servo system with permanent magnet synchronous motors,” IEEE Transactions on Industrial Electronics, vol. 33, no. 1, pp. 87-91, 1986.

    [9] Y. Dote, Servo Motor and Motion Control Using Digital Signal, Prentice- Hall Inc., New Jersey, 1990.

    [10] S. Komada, M. Ishida, K. Ohnishi and T. Hori, “Motion control of linear synchronous motors based on disturbance observer,” 16th Annual Conference of the Industrial Electronics Society of the IEE, vol. 2, pp.154-159, 1990.

    [11] Q. Guo, L. Wang and R. Luo, “Robust fuzzy variable structure control of PMLSM servo system,” 1997 IEEE International Conference of the Intelligent Processing Systems, vol. 1, pp. 675-679, 1997.

    [12] K. Inoue, J. Yoshitsugu, S. Shirogane, P. Boyagoda and M. Nakaoka, “DC brushless servo motor drive systems using automatic learning control-based auto gain parameter tuning scheme,” Proceedings of the Power Conversion Conference, vol. 2, pp. 667-672, August 1997.

    [13] L. Wang, Y. Wang, Q. Guo and R. Luo, “Neural network based brushless DC motor servo system,” Proceedings on Industrial Electronics Society of the 24th Annual Conference of the IEEE, vol. 1, pp. 67-71, 1998.

    [14] P. Famouri, “Control of a linear permanent magnet brushless DC motor via exact linearization methods,” IEEE Transactions on Energy Conversion, vol. 73, no.3, pp.544-551, 1992.

    [15] C. M. Liaw, R. Y. Shue, H. C. Chen, and S. C. Chen, “Development of a linear brushless DC motor drive with robust position control,” Proceedings of Electric Power Applications of the IEE, vol. 148, issue 2, March 2001.

    [16] C. K. Lee and N. M. Kwok "A BLDCM servo system using a variable structure controller with an adaptive switching slope," Conference Record of the Power Electronics Specialists, vol. 2, pp. 1352- 1357, June 1995.

    [17] H. Hashimoto, H. Yamamoto, S. Yanagisawa and F. Harashima, "Brushless servo motor control using variable structure approach," IEEE Transactions on Industry Applications, vol. 24, no. 1, pp. 160-170, 1988.

    [18] C. T. Pan, T. Y. Chang and C. M. Hong, “A fixed structure discrete-time sliding mode controller for induction motor drives,” IEEE Transactions on Energy Conversion, vol. 9, no.1, 1994.

    [19] C. T. Pan and T. Y. Chang, “A fixed structure sliding mode controlled Induction motor drive,” Proceedings of the Conference of the IEEE Power Electronics Specialists, vol.20, June 1994.

    [20] Y. K. Tzeng, C. T. Pan and T. C. Wang, “A fixed structure sliding mode control of the low-power consumption maglev system for high speed transportation,” Proceedings of the IEEE International Symposium on Industrial Electronics, vol.2, July 1995, pp. 695-699.

    [21]許文俊,『三相昇壓型主動式整流器之適應性定結構滑模控制』,清華大學碩士論文,中華民國九十一年七月。

    [22]林世彬,『應用於感應馬達驅動器之雙定結構滑模控制器』,清華大學碩士論文,中華民國九十二年七月。

    [23]P. Vas, Vector Control of AC Machines, New York: Oxford University Press, 1990.

    [24]蘇維德, 『線性直流無刷馬達驅動定位平台之直接數位控制』,清華大學碩士論文,民國九十年六月。

    [25]許溢适 編著,『電動機控制』,全華,民國八十三年。

    [26]張錠玉,『基於空間向量之高性能感應伺服驅動器之設計與實作』,清華大學碩士論文,中華民國八十三年五月。

    [27]V. I. Utkin, Sliding Modes and Their Application in Variable Structure System, Moscow: MIR publisher, 1978.

    [28]F. Cupertino, A. Lattanzi, L. Salvatore and Politecnico di Bari, “Sliding mode control of an induction motor,” Proceedings of the IEE Conference Publication on Power Electronics and Variable Speed Drives, no. 475, September 2000.

    [29]S. K. Lin and C. H. Fang, “Sliding-mode direct torque control of an induction motor,” Proceedings of the 27th Annual Conference of the IEEE Industrial Electronics Society.

    [30]Gene F. Franklin, J. David Powell and Abbas Emami-Naeini, Feedback Control of Dynamic System 4th Ed., Prentice Hall, New Jersey, 2002.

    [31]TMS320x281x DSP Analog-to-Digital Converter Reference Guide, Texas Instruments, November 2004.

    [32]TMS320F240 DSP-Solution for High Resolution Position with Sin/Cos Encoders, Texas Instruments, December 1998.

    [33]Henk Polinder, Barrie C. Mecrow, Alan G. Jack, Phillip G. Dickinson, and Markus A. Mueller, “Conventional and TFPM linear generators for direct-drive wave energy conversion,” IEEE Transactions on Energy Conversion, vol. 20, no. 2, June 2005.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE