研究生: |
趙育逵 Chao, Yu-Kwei |
---|---|
論文名稱: |
利用環狀排列之光注入半導體雷射產生寬頻混沌信號之研究 Study of Broadband Chaotic Signal Generation Utilizing Optically Injected Semiconductor Lasers in a Ring Configuration |
指導教授: |
林凡異
Lin, Fan-Yi |
口試委員: |
陳浩夫
魏明達 林凡異 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 71 |
中文關鍵詞: | 半導體雷射 、混沌訊號 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究是以半導體雷射之光注入系統為基礎,發展寬頻渾沌訊號產生器。
渾沌訊號擁有較寬且平坦的功率頻譜,在分析渾沌訊號時,頻寬為其中一個描
述訊號特性之工具。目前常見的頻寬計算方法可分為下述兩種: (1)從直流到佔
有80 % 總功率的頻率範圍,(2)中間佔有80 % 總功率的頻率範圍。使用上述兩
種頻寬計算方法有時會使窄頻之週期震盪訊號被誤算為寬頻訊號,因此,本研
究前半部提出一頻帶計算方法去計算訊號之有效頻寬,有效頻寬之定義為佔有
前80 % 總功率之各段頻帶寬度總和。在此我們利用這三種計算方法比較由光注入
系統所產生之訊號的頻寬,並比較自相關峰值半高全寬和各定義頻寬值之關係。
經由模擬結果發現,有效頻帶計算方法可清楚的分辨窄頻週期訊號和寬頻渾沌訊
號,並且有效頻帶計算之頻寬值和Peak to sidelobe level (PSL) 呈現反比之現象。因
此,有效頻帶計算方法為較好的頻寬量測方法。
經由上述成功的利用有效頻帶計算方法來描述訊號之特性,接著我們利用有效
頻帶計算方法探討本研究後半部之主題: 環狀排列混沌訊號產生器,目的為產生更
寬頻之混沌訊號。環狀結構為利用多顆雷射串聯注入並讓末顆雷射打回首顆雷射
之架構。因此,環狀結構可視為光注入系統,我們討論討論下列兩部分: (1)注入強
度對於雷射頻寬之影響,(2)雷射的頻率差對於雷射之影響。其模擬結果如下:
1. 環狀排列之雷射頻寬會隨著注入強度增強而增加。在相同注入強度之範圍
下,環狀結構所能產生之混沌訊號最大頻寬是一般光注入系統的2 倍。
2. 環狀結構雷射之頻寬在改變兩雷射的頻率差時,必須同時考慮兩雷射的鬆弛
震盪頻率和注入渾沌訊號之響應頻率。因此,環狀結構之頻寬並不會隨著兩
雷射的頻率差增加而增加。經由適當的調整兩雷射頻率差,比較環狀結構和
光注入系統的最大頻寬,環狀結構是光注入系統的1.8 倍。
[1] A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-
Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications
at high bit rates using commercial fiber-optic links,” Nature 438, 343-346 (2005).
[2] J. Paul, M. W. Lee, and K. A. Shore, “3.5-GHz signal transmission in an all-optical
chaotic communication scheme using 1550-nm diode lasers,” IEEE Photon. Technol.
Lett. 17, 1041-1135 (2005).
[3] F. Y. Lin and M. C. Tsai, “Chaotic communication in radio-over-fiber transmission
base on optoelectronic feedback semiconductor lasers,” Opt. Express 15, 302-311
(2007).
[4] A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T.
Kurashige, M. Shiki, S.Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random
bit generation with chaotic semiconductor lasers,” Nature Photonics 2, 728-732
(2008).
[5] K. Hirano, K. Amano, A. Uchida, S. Naito, M. Inoue, S. Yoshimori, K. Yoshimura,
and P. Davis, “Characteristics of fast physical random bit generation using chaotic
semiconductor lasers,” IEEE J. Quantum Electron. 45, 1367-1379 (2009).
[6] K. Hirano, T. Yamazako, S. Morikatsu, H. Okumura, H. Aida, A. Uchida, S. Yoshimori,
K. Yoshimura, T. Harayama, and P. Davis, “Fast random bit generation with
bandwidth-enhanced chaos in semiconductor lasers,” Opt. Express 18, 5512-5524
(2010).
[7] F. Y. Lin and J. M. Liu, “Chaotic lidar,” IEEE J. Sel. Topics Quantum Electron.
10, 991-997, (2004).
[8] F. Y. Lin and J. M. Liu, “Chaotic radar using nonlinear laser dynamics,” IEEE J.
Quantum Electron. 40, 815-820 (2004).
[9] W. T. Wu, Y. H. Liao, and F. Y. Lin, “Noise suppressions in synchronized chaos
lidars,” Opt. Express 18, 26155-26162 (2010).
[10] H. Someya, I. Oowada, H. Okumura, T. Kida, and A. Uchida, “Synchronization
of bandwidth-enhanced chaos in semiconductor lasers with optical feedback and
injection,” Opt. Express 17, 19532-19543 (2009).
[11] A. Wang, Y. Wang, and H. He, “Enhancing the bandwidth of the optical chaotic
signal generated by a semiconductor laser with optical feedback,” IEEE Photon.
Technol. Lett. 20, 1633-1635 (2008).
[12] A. B. Wang, Y. C. Wang, and J. F. Wang, “Route to broadband chaos in a chaotic
laser diode subject to optical injection,” Opt. Lett. 34, 1144-11146 (2009).
[13] S. C. Chan and Wallace K. S. Tang, “Chaotic dynamics of laser diodes with strongly
modulated optical injection,” International Journal of Bifurcation and Chaos 19,
3417-3424 (2009).
69
[14] F. Y. Lin and J. M. Liu, “Nonlinear dynamical characteristics of an optically injected
semiconductor laser subject to optoelectronic feedback,” Opt. Comm. 221, 173-180
(2003).
[15] F. Y. Lin, S. Y. Tu, C. C. Huang, and S. M. Chang, “Nonlinear dynamics of semiconductor
lasers under repetitive optical pulse injection,” IEEE J. of Sel. Top. Quantum
Electron. 15, 604-611 (2009).
[16] J. Mork, “Chaos in semiconductor-lasers with optical feedback - theory and experiment,”
IEEE J. Quantum Electron. 28, 93 - 108 (1992).
[17] A. Uchida, T. Heil, Y. Liu, P. Davis, and T. Aida, “High-frequency broad-band
signal generation using a semiconductor laser with a chaotic optical injection,” IEEE
J. Quantum Electron. 39, 1462-1467 (2003).
[18] Y. Takiguchi, K. Ohyagi, and J. Ohtsubo, “Bandwidth-enhanced chaos synchronization
in strongly injection-locked semiconductor lasers with optical feedback,” Opt.
Lett. 28, 319-321 (2003).
[19] Y. C.Wang, G. Zhang, and A. B.Wang, “Enhancement of chaotic carrier bandwidth
in laser diode transmitter utilizing external light injection,” Opt. Comm. 227, 156-
160 (2007).
[20] N. Gross, W. Kinzel, I. Kanter, M. Rosenbluh, and L. Khaykovich “Synchronization
of mutually versus unidirectionally coupled chaotic semiconductor lasers,” Opt.
Comm. 267, 464-468 (2006).
[21] S. K. Hwang and J. M. Liu, Dynamical characteristics of an optically injected
semiconductor laser, Opt. Commun. 183, 195-205 (2000).
[22] M. C. Chiang, H. F. Chen, and J. M. Liu, Synchronization of mutually coupled
systems, Opt. Commun. 261, 86-90 (2006).