研究生: |
呂尚鴻 |
---|---|
論文名稱: |
電動車路徑規劃問題 The Electric Vehicle Touring Problem |
指導教授: | 廖崇碩 |
口試委員: |
王小璠
溫于平 廖崇碩 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工業工程與工程管理學系 Department of Industrial Engineering and Engineering Management |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 43 |
中文關鍵詞: | 近似演算法 、電動車 、最短路徑 、旅行者銷售問題 、車輛途程 |
外文關鍵詞: | approximation algorithms, electric vehicle, shortest paths, traveling salesman problem, vehicle routing |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
暖化問題日益嚴重使電動車產業快速發展。電動車的普及化能減緩溫室效應並更有效率地利用能源。本研究主要探討電動車路徑規劃問題,考量電動車需要充電的議題,針對電動車規劃出對其而言最佳的行駛路徑。目標為對一台給定電池電力容量上限的電動車,找出其在道路網路中從一點到另一點的最短時間路徑,稱為電動車最短路徑問題(the EV shortest path problem),或找出其訪問數個指定地點所需要的最短時間路徑,稱為電動車巡迴路徑問題 (the EV touring problem)。而這些路徑都必須涵蓋電動車因電力需求而前往電池交換站更換電池的路徑與時間。本研究對電動車最短路徑問題和固定巡迴電動車巡迴路徑問題(the fixed tour EV touring problem)-電動車需依固定順序訪問所有指定地點-分別提出多項式時間的演算法。根據這些結果,我們進一步對電動車巡迴路徑問題(其為更複雜化的旅行者銷售問題),提出可理論證明的常數倍數近似演算法。
The increasing concern over global warming has led to the rapid development of the electric vehicle industry. Electric vehicles (EVs) have the potential to reduce the greenhouse effect and facilitate more efficient use of energy resources. In this paper, we investigate some optimal EV route planning problems that take into consideration of possible battery charging or swapping operations. Given a road network, the objective is to determine the shortest route that a vehicle with a given battery capacity can take to travel between a pair of vertices or to visit a set of vertices with several stops, if necessary, at battery switch stations. We present polynomial time algorithms for the EV shortest path problem and a fixed tour EV touring problem, where the fixed tour problem requires visiting a set of vertices in a given order. Based on the result, we also propose constant factor approximation algorithms for the EV touring problem, which is a generalization of the traveling salesman problem.
1. An, H.-C., R. Kleinberg, and D.B. Shmoys. “Improving Christofides’ algorithm for the s-t path TSP.” Proceedings of the 44th ACM Symposium on Theory of Computing (STOC’12), 875-886 (2012).
2. Bansal, N., A. Blum, S. Chawla, and A. Meyerson. “Approximation algorithms for deadline-TSP and vehicle routing with time-windows.” Proceedings of the 36th ACM Symposium on Theory of Computing (STOC’04), 166-174 (2004).
3. Better Place. http://www.betterplace.com/
4. Blum, A., S. Chawla, D.R. Karger, T. Lane, A. Meyerson, and M. Minkoff. “Approximation algorithms for orienteering and discounted-reward TSP.” Proceedings of the 44th IEEE Symposium on Foundations of Computer Science(FOCS’03), 46-55 (2003).
5. Campbell, A.M., M. Gendreau, and B.W. Thomas. “The orienteering problem with stochastic travel and service times.” Annals of Operations Research, 186(1), 61-81(2011).
6. Chang, M.-S. “Efficient algorithms for the domination problems on interval and circular-arc graphs.” SIAM J. Computing, 27(6), 1671-1694 (1998).
7. Christofides, N. “Worst-case analysis of a new heuristic for the traveling salesman problem.” Technical Report 388, Graduate School of Industrial Administration, Carnegie-Mellon University (1976).
8. Cormen, T.H., C.E. Leiserson, R.L. Rivest, and C.Stein. “Introduction to algorithms.” The MIT Press, third Edition, (2009).
9. Dijkstra, E.W. “A note on two problems in connexion with graphs.” Numerische Mathematik, 1(1)269-271 (1959).
10.Driscoll, J.R., H.N. Gabow, R. Shrairman, and R.E. Tarjan. “Relaxed heaps: An alternative to Fibonacci heaps with applications to parallel computation.” Communication of the ACM, 31(11) 1343-1354 (1988).
11. Electric Power Research Institute. “The power to reduce CO2 emissions: the full portfolio-2009 technical report.” (2009).
12. S. and E. Miller-Hooks. “A green vehicle routing problem.” Transportation Research Part E,” 48 100-114 (2012).
13. Fredman, M.L. and R.E. Tarjan. “Fibonacci heaps and their uses in improved network optimization algorithms. ” Journal of the ACM, 34(3) 596-615 (1987).
14. Hsu, W.-L. and K.-H. Tsai. “Linear time alorithms on circular-arc graphs.” Inform. Process. Letters, 40(3), 123-129 (1991)
15. Khuller S., A. Malekian, and J. Mestre. “To fill or not to fill: the gas station problem.” ACM Trans. Algorithms, 7(3) 36 (2011).
16. Laporte, G. “Fifty years of vehicle routing.” Transportation Science, 43(4) 408-416 (2009).
17. Li, C.-L., D. Simchi-Levi, and M. Desrochers. “On the distance constrained vehicle routing problem,” Operations Research, 40(4) 790-799 (1992)
18. Lin, S.-H. “Finding optimal refueling policies in transportation networks.” Proceedings of the 4th Algorithmic Aspects in Information and Management (AAIM’08), LNCS 5034 280-291 (2008).
19. Lin, S.-H., N. Gertsch, and J.R. Russell. “A linear-time algorithm for finding optimal vehicle refueling policies.” Operations Research Letters, 35 290-296 (2007).
20. Pillac, V., M. Gendreau, C. and A.L. Medaglia. “A review of dynamic vehicle routing problems.” European Journal of Operational Research 225(1) 1-11 (2013)
21. Schneider, M., A. Stenger, and D. Goeke. “The electric vehicle routing problem with time windows and recharging stations.” Technical Report, BISOR, TU Kaiserslautern, (2012).
22. Suzuki, Y. “A generic model of motor-carrier fuel optimization.” Navel Research Logistics, 55 737-746 (2008).
23. Suzuki, Y., “A decision support system of dynamic vehicle refueling.” Decision Support Systems, 46 522-531 (2009).
24. U.S. DOE, Department of Energy (2009), The alternative fuels and advanced vehicles data center (AFDC). http://www.afdc.energy.gov/afdc/locator/stations
25. U.S. EPA, Environmental Protection Agency. http://www.epa.gov/