簡易檢索 / 詳目顯示

研究生: 王偉丞
Wang, Wei Cheng
論文名稱: 雙層氮化矽堆疊的溝槽式無接面超薄複晶矽通道電晶體於快閃記憶體之研究
Study of Double Stacked Si3N4 (SONNOS) Flash Memory based on Ultra-Thin Body Poly-Si Junctionless FET with Trench Structure
指導教授: 吳永俊
Wu, Yung Chun
口試委員: 林育賢
李耀仁
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 62
中文關鍵詞: 雙層氮化矽溝槽式超薄複晶矽通道快閃記憶體
外文關鍵詞: Double Stacked Si3N4, Ultra-Thin Body, Junctionless FET, Trench Structure
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本次實驗為雙層氮化矽堆疊的溝槽式無接面超薄賦晶矽通道電晶體結合快閃記憶體之研究,主要利用超薄複晶矽通道來提升電晶體部分的電特性,並以此為基礎加上雙層氮化矽堆疊的電荷儲存層(SONNOS)來改善傳統傳統SONOS記憶體較差的電荷儲存能力。本研究的製程簡單且與現金快閃記憶體製程的相容性高,因此很有機會可以應用在未來記憶體元件和高度的三為堆疊技術上。
    電晶體特性部分,此元件有著優秀的電特性,而在記憶體部分使用了雙層氮化矽堆疊當作電荷儲存層的結構下,有效的提升了記憶體的各項電特性,在利用穿隧式(FN-tunneling)寫入/抹除機制下,SONNOS結構的元件相對於傳統SONOS元件展現了更優異以及更高良率的表現。此外,在記憶體可靠度的分析上,SONNOS元件依舊表現出了優異的表現。特別是在溫度85°C下模擬十年後的元件儲存電荷能力,SONNOS元件在不論是N通道或是P通道,平面通道結構或是擁有奈米線結構都展現出了趨近於99%的電荷儲存能力。


    In this study, the “Double Stacked Si3N4 Flash Memory Based on Ultra-Thin Body Poly-Si Junctionless FET with trench structure”, the characteristics of transistor were improved by ultra-thin channel, and the double stacked Si3N4 was used to improve the poor retention ability of conventional SONOS memory device. Moreover, the fabrication has the simple process and compatible with current Flash memory process. Therefore, it has more opportunity to apply for high density 3D stack technology.
    In the point of transistor character, the device has excellent electrical performance, and the part of memory device which was used the double stacked Si3N4 layers as trapping layers that improving the memory characteristics. By FN-tunneling, the SONNOS device present better and higher yield than conventional SONOS device。 Beside, In the reliability of memory device, the SONNOS device also has excellent performance。Especially, the retention characteristic of SONNOS memory device has excellent performance under ten years at 85°C. The device memory windows maintain almost 99% no matter n-channel, p-channel, planar, or Nanowires structure.

    Contents 中 文 摘 要 i Abstract iii Acknowledge v Contents vii Figure Captions ix Chapter 1 1 1.1 The application of flash memory and the challenge of moore’s law 1 1.2 Introduction of Junctionless Device 3 1.3 Introduction of Nonvolatile Memory 9 1.4 The SONOS NVM 13 1.5 The 3D stack of poly-Si channel 15 1.6 Motivation 17 1.7 Thesis Organization 21 Chapter 2 22 Basic Mechanism and Reliability of Nonvolatile Memory 22 2.1 Introduction 22 2.2 Basic Mechanisms 25 2.2.1 Fowler-Nordheim (FN) Tunneling 25 2.2.2 Fowler-Nordheim (FN) Tunneling erase 28 2.3 Reliability 30 2.3.1 Endurance 30 2.3.2 Retention 30 Chapter 3 32 Device Fabrication 32 3.1 Device structure and fabrication 32 Chapter 4 40 Ultra-Thin Body (2.2nm) Nanowire Poly-Si Junctionless Thin Film Transistors with Double Stacked Si3N4 (SONNOS) for Flash Memory application 40 4.1 The characteristics of Junctionless thin film transistors 40 4.2 FN-tunneling Programming/Erasing 46 4.2.1 Id-Vg Characteristic 46 4.2.2 Program/Erase Characteristic 47 4.2.3 Endurance Characteristic 49 4.2.4 Retention Characteristic 51 Chapter 5 56 Conclusion 56 Reference 58  

    Chapter 1
    [1-1] Apple buying up available flash RAM supplies for next iPhone
    , from (http://www.roughlydrafted.com/2009/02/18/apple-buying-up-available-flash-ram-supplies-for-next-iphone/)

    [1-2] Thomas Friedman and the Fallacies of Moore’s Law
    , from (https://rethinktechnology.wordpress.com/2014/01/16/thomas-friedman-and-the-fallacies-of-moores-law/).

    [1-3] Chi-Woo Lee, Isabelle Ferain, Aryan Afzalian, Ran Yan, Nima Dehdashti Akhavan, Pedram Razavi, Jean-Pierre Colinge, “Performance estimation of junctionless multigate transistors,” Solid-State Electronics, vol. 53, pp. 97-103, 2010.
    [1-4] J. P. Colinge, C. W. Lee, A. Afzalian, N. D. Akhavan, “Nanowire transistors without junctions”, Nature Nanotechnology, Vol. 28, pp. 225 - 229, 2010.
    [1-5] Lee, C. W., Afzalian, A., Akhavan, N. D., Yan, R., Ferain, I., & Colinge, J. P. “Junctionless multigate field-effect transistor”, Applied Physics Letters, 94 (5), 053511.2009.
    [1-6] H. C. Lin, C. I. Lin, T. Y. Huang, “Characteristics of n-type junctionless poly-Si thin-film transistors with an ultrathin channel”, Electron Device Letters, Vol. 33, pp. 53-55, 2012.
    [1-7] J. P. Colinge, “Semiconductor-On-Insulator Materials for NanoElectronics Applications”, chapter 10, pp.187, 2011.
    [1-8] Pavan, Paolo, et al. “Flash memory cells-an overview”, Proceedings of the IEEE 85.8 (1997): 1248-1271.
    [1-9] D. Kahng, S. M. Sze, “A floating gate and its application to memory devices”, IEEE Transactions on Electron Devices, Vol. 14, pp. 629-629, 1967.
    [1-10] Frohman-Bentchkowsky, “A new semiconductor charge storage device”, Solid State Electronics, Vol. 17, pp. 517-528, 1974.
    [1-11] V. N. Kunett, “An In-system Reprogrammable 256k CMOS Flash Memory”, ISSCC Tech. Dig., pp. 132, 1988.
    [1-12] B. D. Salvo, “Performance and reliability features of advanced nonvolatile memories based on discrete traps (silicon nanocrystals, SONOS)”, Device and Materials Reliability, Vol. 4, pp. 377-389, 2004.
    [1-13] J. D. Lee, “Effects of floating-gate interference on NAND flash memory cell operation”, Electron Device Letters, Vol. 23, pp. 264-266, 2002.
    [1-14] C. Y. Lu, K. Y. Hsieh, “Future challenges of flash memory technologies”, Electron Device Letters, Vol. 86, pp. 283-286, 2009.
    [1-15] M. Specht, “Novel dual bit tri-gate charge trapping memory devices”, Electron Device Letters, Vol. 25, pp. 810-812, 2004.
    [1-16] C. H. Lee, S. H. Hur, Y. C. Shin, “Novel dual bit tri-gate charge trapping memory devices”, Applied Physics Letters, Vol. 86, 2005.
    [1-17] M. F. Hung, Y. C. Wu, Z. Y. Tang, “High-performance gate-all-around polycrystalline silicon nanowire with silicon nanocrystals nonvolatile memory”, Applied Physics Letters, Vol. 98, pp. 162108 - 162108-3, 2011.
    [1-18] S. C. Chen, T. C. Chang, P. T. Liu, “A novel nanowire channel poly-Si TFT functioning as transistor and nonvolatile SONOS memory”, Electron Device Letters, Vol. 28, pp. 809-811, 2007.
    [1-19] E. K. Lai, H. T. Lue, Y. H. Hsiao, J. Y. Hsieh, “A Highly Stackable Thin-Film Transistor (TFT) NAND-Type Flash Memory”, VLSI Technology, Vol. 28, pp. 46-47, 2006.
    [1-20] Vertical 3D NAND Possible by 2013-2014 By David Lammers, SemiMD, from(http://www.semi.org/en/node/38361).

    [1-21] Park, J. K., Kim, S. Y., Lee, K. H., Pyi, S. H., Lee, S. H., & Cho, B. J. “Surface-controlled ultrathin (2 nm) Poly-Si channel junctionless FET towards 3D NAND flash memory applications”. VLSI Technology (VLSI-Technology): Digest of Technical Papers, pp. 1-2. 2014.

    [1-22] Kim, B., Lim, S. H., Kim, D. W., Nakanishi, T., Yang, S., Ahn, J. Y., ... & Kang, C. J. “Investigation of ultra thin polycrystalline silicon channel for vertical NAND flash”, In Reliability Physics Symposium (IRPS), pp. 2E-4. 2011.
    [1-23] Yeh, M. S., Wu, Y. C., Wu, M. H., Jhan, Y. R., Chung, M. H., & Hung, M. F. (2014, December). “High performance ultra-thin body (2.4 nm) poly-Si junctionless thin film transistors with a trench structure”, In Electron Devices Meeting (IEDM), pp. 26-6. 2014.

    Chapter 2
    [2-1] P. Pavan, R. Bez, P. Olivo, E. Zanoni, “Flash memory cells-an overview”, Proceedings of the IEEE, Vol. 85, pp. 1248, 1997.
    [2-2] M. Lenzlinger, E. H. Snow, “Fowler‐Nordheim Tunneling into Thermally Grown SiO2”, J. Appl. Phys., Vol. 40, 1, 2003.
    Chapter 3
    [3-1] Yeh, M. S., Wu, Y. C., Wu, M. H., Jhan, Y. R., Chung, M. H., & Hung, M. F. (2014, December). “High performance ultra-thin body (2.4 nm) poly-Si junctionless thin film transistors with a trench structure”, In Electron Devices Meeting (IEDM), pp. 26-6. 2014.

    Chapter 4
    [4-1] Park, J. K., Kim, S. Y., Lee, K. H., Pyi, S. H., Lee, S. H., & Cho, B. J. “Surface-controlled ultrathin (2 nm) Poly-Si channel junctionless FET towards 3D NAND flash memory applications”. VLSI Technology (VLSI-Technology): Digest of Technical Papers, pp. 1-2. 2014.
    [4-2] Kim, B., Lim, S. H., Kim, D. W., Nakanishi, T., Yang, S., Ahn, J. Y., ... & Kang, C. J. “Investigation of ultra thin polycrystalline silicon channel for vertical NAND flash”, In Reliability Physics Symposium (IRPS), pp. 2E-4. 2011.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE