簡易檢索 / 詳目顯示

研究生: 徐菘蔚
Hsu, Sung Wei
論文名稱: 螺桿膨脹機有機朗肯循環性能分析與實驗研究
Performance Analyses and Experimental Studies on Screw-Expander ORCs for Low grade Heat to Power
指導教授: 蔣小偉
Chiang, Hsiao-Wei D.
口試委員: 劉承賢
Liu, Cheng-Hsien
黃智永
Huang, Chih-Yung
蔡博章
Tsai, Bor-Jang
郭啟榮
Kuo, Chi-Ron
學位類別: 博士
Doctor
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 133
中文關鍵詞: 有機朗肯循環次臨界穿臨界螺桿膨脹機系統優化過膨脹膨脹不足離點性能
外文關鍵詞: organic Rankine cycle, subcritical, trans-critical, screw expander, system optimizatoin, over-expansion, under-expansion, off design performance
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有機朗肯循環系統(ORC)為中低溫熱能發電技術中最簡單且最具經濟效益的技術。一般建議裝置容量低於300 kW的ORC系統採用螺桿膨脹機最為核心動力元件。本研究針對螺桿ORC進行理論分析與實驗驗證。藉由次臨界與穿臨界系統建立之系統優化模式,本研究針對不同熱源進行工作流體篩選與系統優化,並針對系統中工作流體泵與膨脹機效率進行敏感度分析,研究顯示此二元件之效率對穿臨界ORC系統的影響遠高於對次臨界ORC系統之影響。本研究針對不同熱源溫度範圍開發兩組次臨界ORC系統,分別為應用於60~85°C熱水型熱源的20-kW R134a-ORC系統與應用於90~105°C熱水型熱源的50-kW R245fa-ORC系統,並藉由實驗探討熱源變動與冷源變動對於系統以及關鍵元件效率的影響。實驗證實螺桿型ORC系統具有寬廣的操作範圍與穩定的性能表現,後續系統性能提升除了由動力元件效率提升外,亦可朝降低蒸發器壓損著眼。本研究亦針對螺桿膨脹機之作功模式建立理論分析模式探討系統離點操作對膨脹機性能之影響,包含過膨脹與膨脹不足等離點狀態,以及入口壓力對膨脹機性能的影響。透過實驗,理論推導獲得良好的驗證。


    To date, ORC is the most efficient and economical approach for the recovery of low-to-medium heat to power. In general, a volumetric-type screw-expander is selected as the ORC’s engine core for power capacity less than 300 kW due to its superior performance and competitive cost. This thesis theoretically and experimentally studies on the system characteristics and performance behaviors of screw-expander ORCs.
    Steady-state models of the ORC’s components are theoretically developed and experimentally validated. Then, the model of the ORC system is established to predict its performance. In view of practical and economical applications of an ORC, a trade-offs analysis between cycle efficiency and amount of power output is performed for system optimization under limited heat source for subcritical ORCs and trans-critical ORCs.
    Two sets of ORCs are designed and developed, and a series of performance tests are done to explore the characteristics of these two ORC systems. (1)20kW screw-expander ORC: using R134a as working fluid, converted the heat of 60~85°C hot water into power. (2) 50kW screw-expander ORC: using R245fa as working fluid, converted the heat of 90~105°C hot water into power.
    A theoretical expansion model of screw expander is developed and compared with experimental data. The achieved performance of these two ORCs are promising, with expander efficiency of 72.5% and cycle efficiencies higher than the typical efficiencies reported for the considered temperature range. The ORCs can be used to exploit the low temperature heat, as low as 60°C, with high performance which predict their wide application and potential energy saving.

    Abstract 1 Acknowledgements 2 Nomenclature 3 Contents 6 Figures 8 Tables 11 1. Introduction 12 1.1. Low-to-Medium Heat Potential 13 1.2. Heat-to-Power Technologies 15 1.3. ORC System 16 1.4. Status of ORC Development 19 1.5. Objectives 21 2. Literature Review 23 2.1. Working Fluid Selection 24 2.2. Saturated Cycle vs. Superheated Cycle 27 2.3. Sub-critical Cycle vs. Trans-critical Cycle 29 2.4. Recuperative Cycle 31 2.5. Parametric Analysis and Optimization 33 2.6. Components Characteristics 35 2.7. Off-Design Modeling 39 3. Cycle Performance Analysis 40 3.1. Modelling of the Process 40 3.2. Subcritical ORC System Analysis 42 3.3. Trans-Critical ORC System 46 3.3.1. System Thermal Efficiency 47 3.3.2. Heat Recovery Rate 49 3.3.3. Maximum Power Output 52 3.4. Sensitivity Analysis 59 4. 20-kW and 50-kW Screw ORC Systems 62 4.1. Test Rig 63 4.2. 50-kW R245fa ORC System 66 4.3. 20-kW R-134a ORC system 72 4.3.1. Working Fluid Selection 72 4.3.2. System Design and Integration 75 4.4. Test Plans 79 4.4.1. 50-kW R245fa-ORC 79 4.4.2. 20-kW R134a-ORC 81 5. System Performance 82 5.1. 50-kW ORC 82 5.1.1. System Response to Change of Hot Water Inlet Temperature 82 5.1.2. System Performance with Varying Heat Sink Conditions 91 5.2. 20-kW ORC 98 5.2.1. Design Point 98 5.2.2. Off-Design Point 101 6. Screw Expander Characteristics 112 6.1. Theoretical Modeling 112 6.2. Experimental Results and Discussion 118 7. Conclusions and suggestions 123 8. Reference 128

    [1] Shahriar, S.; Erkan, T. “When will fossil fuel reserves be diminished?” Energy Policy, 2009, 37, 1, 181-189.
    [2] “Energy statistics handbook 2013”, Bureau of Energy, MOEA, 2014.
    [3] Bombarda, P.; Invernizzi, C. M.; Pietra, C. Heat recovery from diesel engines: A thermodynamic comparison between Kalina and ORC cycles. Applied Thermal Engineering 2010, 30, 212-219.
    [4] Tchanche, B. F.; Lambrinos, G.; Frangoudakis, A.; Papadakis, G. Low-grade heat conversion into power using organic Rankine cycles-A review of various applications. Renewable and sustainable Energy Reviews 2011, 15, 8, 3963-3979.
    [5] Quoilin, S.; Lemort, V. Technological and economical survey of organic Rankine cycle systems, 5th European Conference Economics and Management of Energy in Industry, Protugal, 14-17 April 2009.
    [6] Velez, F.; Segovia, J. J.; Martin, M. C.; Antolin, G.; Chejne, F.; Quijano, A. A technical, economical and market review of organic Rankine cycles for the conversion of low-grade heat for power generation. Renewable and Sustainable Energy Reviews 2012, 16, 6, 4175-7189.
    [7] Ksayer, E. B. L. Design of an ORC system operating with solar heat and producing sanitary hot water. Energy Procedia 2011, 6, 389-395.
    [8] Obernberger, I.; Thonhofer, P.; Reisenhofer, E. Description and evaluation of the new 1,000kWel Organic Rankine Cycle process integrated in the biomass CHP plant in Lienz, Austria. Euroheat & Power 2002, 10, 1-17.
    [9] Liu H.; Shao, Y.; Li, J. A biomass-fired micro-scale CHP system with organic Rankine cycle (ORC) – Thermodynamic modelling studies. Biomass and bioenergy 2011, 35, 9, 3985-3994.
    [10] Taljan, G.; Verbic, G.; Pantos, M.; Sakulin, M.; Fickert, L. Optimal sizing of biomass-fired Organic Rankine Cycle CHP system with heat storage. Renewable Energy 2012, 41, 29-38.
    [11] Stoppato, A. Energetic and economic investigation of the operation management of an Organic Rankine Cycle cogeneration plant. Energy 2012, 41, 1, 3-9.
    [12] Taghaddosi, M. thermodynamic modeling for combined ORC (organic Rankine cycle) and single-flash geothermal power plants. Proceedings World Geothermal Congress 2005, Antalya, Turkey, 24-29 April 2005.
    [13] Yari, M. Exergitic analysis of various types of geothermal power plants. Renewable Energy 2010, 35, 112-121.
    [14] Guzovic, Z.; Majcen, B.; Cvetkovic, S. Possibilities of electricity generation in the Republic of Croatia from medium-temperature geothermal sources. Applied Energy 2012, 98, 404-414.
    [15] Karellas, S.; Leontaritis, A. D.; Panousis, G.; Bellos, E.; Kakaras, E. Energetic and exergetic analysis of waste heat recovery systems in the cement industry. Energy 2013, 58, 1, 147-156.
    [16] Campana, F.; Bianchi, M.; Branchini, L.; Pascale, A. D.; Peretto, A.; Baresi, M.; Fermi, A.; Rossetti, N.; Vescovo, R. ORC waste heat recovery in European energy intensive industries: energy and GHG savings. Energy Conversion and Management 2013, 76, 244-252.
    [17] “Waste heat recovery: technology and opportunities in U.S. industry”, U.S. Department of Energy, 112pp. 2008.
    [18] Bianchi, M.; Pascale, A. D. Bottoming cycles for electric energy generation: Parametric investigation of available and innovative solutions for the exploitation of low and medium temperature heat sources. Applied Energy 2011, 88, 1500-1509.
    [19] Chacartegui, R.; Sanchex, D.; Murioz, J. M.; Sanchez, T. Alternative ORC bottoming cycles for combined cycle power plants. Applied Energy 2009, 86, 10, 2162-2170.
    [20] Demierre, J.; Henchoz, S.; Favrat, D. Prototype of a thermally driven heat pump based on integrated Organic Rankine Cycles (ORC). Energy 2012, 41, 1, 10-17.
    [21] Wei, M. S.; Fang, J. L.; Ma C. C. Waste heat recovery from heavy-duty diesel engine exhaust gases by medium temperature ORC system. SCIENCE CHINA Technological Sciences 2011, 54, 10, 2746-2753.
    [22] Fu, B. R.; Hsu, S. W.; Liu, C. H., 2014, Trends in Patent Applications Relating to Organic Rankine Cycle. Procedia Engineering 2014, 79, 249-257.
    [23] Gozdur, A. B.; Nowak, W. Comparative analysis of natural and synthetic refrigerants in application to low temperature Clausius-Rankine cycle. Energy 2007, 32, 344-352.
    [24] Abbin, J. P.; Leuenberger, W. R. “Program CYCLE: A Rankine Cycle Analysis Routine,” Sandia National Laboratories Report SAND 74-0099 (revised), 1974.
    [25] Saleh, B.; Koglbauer, G.; Wendland, M.; Fischer, J. Working fluids for low temperature organic Rankine cycles. Energy 2007, 32 1210-1221.
    [26] Tchanche, B. F.; Papadakis, G.; Lambrinos, G.; Frangoudakis, A. Fluid selection for a low-temperature solar organic Rankine cycle. Applied Thermal Engineering 2009, 29, 2468-2476.
    [27] Papadopoulos, A. I.; Stijepovic, M.; Linke, P. On the systematic design and selection of optimal working fluids for Organic Rankine Cycles. Applied Thermal Engineering 2010, 30, 760-769.
    [28] Chen, H.; Goswami, D. Y.; Stefanakos, E. K. A review of thermodynamic cycles and working fluids for the conversion of low-grade heat. Renewable and Sustainable Energy Reviews 2010, 14, 3059-3067.
    [29] Wang, E. H.; Zhang, H. G.; Fan, B. Y.; Ouyang, M. G.; Zhao, Y.; Mu, Q. H. Study of working fluid selection of organic Rankine cycle (ORC) for engine waste heat recovery. Energy 2011, 36, 3406-3418.
    [30] Aljundi, I. H. Effect of dry hydrocarbons and critical point temperature on the efficiencies of organic Rankine cycle. Renewable Energy 2011, 36, 1196-1202.
    [31] Kuo, C. R.; Hsu, B. H.; Wang, P. H. Characteristics of ORC Systems Based on Turbine Expander. The 34th National Conference on Theoretical and Applied Mechanics, Taiwan, 19-20 November 2010.
    [32] Zhang, S.; Wang, H.; Guo, T. Performance comparison and parametric optimization of subcritical Organic Rankine Cycle (ORC) and transcritical power cycle system for low-temperature geothermal power generation. Applied Energy 2011, 88, 2740-2754.
    [33] Schuster, A.; Karellas, S.; Aumann, R. Efficiency optimization potential in supercritical Organic Rankine cycles. Energy 2010, 35, 1033-1039.
    [34] Velez, F.; Chejne, F.; Antolin, G.; Quijano, A. Theoretical analysis of a transcritical power cycle for power generation from waste energy at low temperature heat source. Renewable Energy 2011, 36, 1196-1202.
    [35] Chen, H.; Goswami, D. Y.; Rahman, M. M.; Stefanakos, E. K. A supercritical Rankine cycle using zeotropic mixture working fluids for the conversion of low-grade heat into power. Energy 2011, 36, 1, 549-555.
    [36] Chen, Y.; Lundqvist, P.; Johansson, A.; Platell, P. A comparative study of the carbon dioxide transcritical power cycle compared with an organic Rankine cycle with R123 as working fluid in waste heat recovery. Applied Thermal Engineering 2006, 26, 2142-2147.
    [37] Cayer, E.; Galanis, N.; Desilets, M.; Nesreddine, H.; Roy, P. Analysis of a carbon dioxide transcritical power cycle using a low temperature source, Applied Energy 2009, 86, 1055-1063.
    [38] Mago, P. J.; Chamra, L. M.; Srinivasan, K.; Somayaji, C. An examination of regenerative organic Rankine cycles using dry fluids. Applied Thermal Engineering 2008, 28, 998-1007.
    [39] Torres, A. M. D.; Rodriguez, L. G. Analysis and optimization of the low-temperature solar organic Rankine cycle (ORC). Energy Conversion and Management 2010, 51, 2846-2856.
    [40] Desai, N. B.; Bandyopadhyay, S. Process integration of organic Rankine cycle. Energy 2009, 34, 1674-1686.
    [41] Roy, J. P.; Mishra, M. K.; Misra, A. Parametric optimization and performance analysis of a waste heat recovery system using Organic Rankine Cycle. Energy 2010, 35, 5049-5062.
    [42] Wei, D.; Lu, X.; Lu, Z.; Gu, J. Performance analysis and optimization of organic Rankine cycle (ORC) for waste heat recovery. Energy Conversion and Management 2007, 48, 1113-1119.
    [43] Hung, T. C. Waste heat recovery of organic Rankine cycle using dry fluids. Energy Conversion and Mangement 2001, 42, 539-553.
    [44] Dai, Y.; Wang, J.; Gao, L. Parametric optimization and comparative study of organic Rankine cycle (ORC) for low grade waste heat recovery. Energy Conversion and Management 2009, 50, 576-582.
    [45] Kuo, C. R.; Hsu, S. W.; Chang, K. H.; and Wang, C. C. Analysis of a 50kW organic Rankine cycle system. Energy 2011, 36, 5877-5885.
    [46] Quoilin, S.; Declaye, S.; Bertrand, B. F.; Lemort, V. Thermo-economic optimization of waste heat recovery Organic Rankine Cycles. Applied Thermal Engineering 2011, 31, 2885-2893.
    [47] Li, J.; Pei, G.; Li, Y.; Wang, D.; Ji, J. Energetic and exergetic investigation of an organic Rankine cycle at different heat source temperatures. Energy 2012 , 38, 85-95.
    [48] Hsieh, Y. Y.; Lin, T. F. Saturated flow boiling heat transfer and pressure drop of refrigerant R-410A in a vertical plate heat exchanger. Int. J. of Heat and Mass Transfer 2002, 45, 1033-1044.
    [49] Karellas, S.; Schuster, A.; Leontaritis, A. D. Influence of supercritical ORC parameters on plate heat exchanger design. Applied Thermal Engineering 2012, 33-34, 70-76.
    [50] Guillen, D.; Klockow, H.; Lehar, M.; Freund, S.; Jackson, J. Development of a direct evaporator for the organic Rankine cycle. Energy Technology. TMS (The Minerals, Metals @ Materials Socitey) 2011, 25-35.
    [51] Kang, S. H. Design and experimental study of ORC (organic Rankine cycle) and radial turbine using R245fa working fluid. Energy 2012, 41, 514-524.
    [52] Quoilin, S.; Declaye, S.; Lemort, V. Expansion machine and fluid selection for the organic Rankine cycle. Proceeding of 7th Int. Con. On Heat Transfer, Fluid Mechanics and Thermodynamics, 2010.
    [53] Qiu, G.; Liu, H.; Riffat, S. Expanders for micro-CHP systems with organic Rankine cycle. Applied Thermal Engineering 2011, 31, 16, 3301-3307.
    [54] Wei, D.; Lu, X.; Lu, Z.; Gu, J. Dynamic modeling and simulation of an organic Rankine cycle (ORC) system for wasted heat recovery. Applied Thermal Engineering 2008, 28, 10, 1216-1224.
    [55] Quoilin, S.; Aumann, R.; Grill, A.; Schuster, A.; Lemort, V.; Spliethoff, H. Dynamic modeling and optimal control strategy of waste heat recovery Organic Rankine Cycles. Applied Energy 2011, 88, 6, 2183-2190.
    [56] Fu, B. R.; Liu, C. H. Performance of a 250 kW organic Rankine cycle system for off-design heat source conditions. 1st International e-Conference on Energies, 14-31 March 2014.
    [57] Fu, B. R., Hsu, S. W., Lee, Y. R., Hsieh, J. C., Chang, C. M., Liu, C. H. Effect of off-design heat source temperature on heat transfer characteristics and system performance of a 250-kW organic Rankine cycle system. Applied Thermal Engineering 2014, 70, 7-12.
    [58] CenGel, Y. A. and Boles M. A. “Thermodynamics – An Engineering Approach,” Fifth Edition in SI Units, published by Mc Graw Hill, 2006.
    [59] Zhang, X. R., Yamaguchi, H., Fujima, K., Enomoto, M., and Sawada, N. Experimental performance analysis of supercritical CO2 thermodynamic cycle powered by solar energy. AIP Conf. Proc. 2006, 832, 419-424.
    [60] Chiang, H. W. D.; Hsu, S. W.; Huang, C. Y. Performance analysis and optimization of a transcritical ORC system. In Proceedings of the 2nd International Seminar on ORC Power Systems, Rotterdam, the Netherlands, 7-8 October 2013.
    [61] Karellas, S.; Schuster, A. Supercritical fluid parameters in organic Rankine cycle applications. Int. J. of Thermodynamics 2008, 11, 3, 101-108.
    [62] Manglik, R. M.; Bergles, A. E. Heat transfer and pressure drop correlations for the rectangular offset strip fin compact heat exchanger. Experimental Thermal and Fluid Science 1995, 10, 171-180.
    [63] Joshi, H. M.; Webb, R. L. Heat transfer and friction in the offset strip-fin heat exchanger. Int. J. Heat Mass Transfer 1987, 30, 69-84.
    [64] Manson, S. V. Correlations of heat transfer data and of friction data for interrupted plane fins staggered in successive rows. NACA Tech. Note 2237, National Advisory Committee for Aeronautics, Washington, DC, December 1950.
    [65] Wieting, A. R. Empirical correlations for heat transfer and flow friction characteristics of rectangular offset-fin plate-fin heat exchangers. J. Heat Transfer 1975, 97, 3, 488-490.
    [66] Mochizuki, S.; Yagi, Y.; Yang, W. J. Transport phenomena in stacks of interrupted parallel-plate surfaces. EXP Heat Transfer 1987, 1, 2, 127-140.
    [67] Dubrovsky, E. V.; Vasiliev, V. Y. Enhancement of convective heat transfer in rectangular ducts of interrupted surfaces. Int. J. Heat Mass Transfer 1988, 31, 807-818.
    [68] Cascales, J. R. G.; Garcia, F. V.; Salvador, J. M. C.; Macia, J. G. Assessment of boiling and condensation heat transfer correlations in the modeling of plate heat exchangers. Int. J. of Refrigeration 2007, 30, 1029-1041.
    [69] Aghahosseini, S.; Dincer, I. Comparative performance analysis of low-temperature organic Rankine cycle (ORC) using pure and zeotropic working fluids. Appl. Therm. Eng. 2013, 54, 35–42.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE