研究生: |
劉邦奕 Liu, Pang-I |
---|---|
論文名稱: |
設計與製作微流道裝置及其數位聚合酶鏈鎖反應之應用 Design and Fabrication of Microfluidic Devices for Digital Polymerase Chain Reaction |
指導教授: |
陳致真
Chen, Chih-Chen |
口試委員: |
許佳賢
Hsu, Chia-Hsien 吳嘉哲 Wu, Chia-Che |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 奈米工程與微系統研究所 Institute of NanoEngineering and MicroSystems |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 41 |
中文關鍵詞: | 微流體 、聚二甲基矽氧烷 、聚甲基丙烯酸甲酯 、數位聚合酶鏈鎖反應 、熱壓成型 、黃光微影製程 |
外文關鍵詞: | Microfluidic, PDMS, PMMA, digitalPCR, Ho tembossing, Pohto lithograohy |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
微流道晶片在數十年來有著廣泛的應用及發展,其中分子生物學中極重要的聚合酶連鎖反應(polymerase chain reaction ,PCR)技術也被大量應用在微流道晶片中。在此,我們製作一可快速製造106個獨立液體之微流道晶片。現今市面上偵測及分析環境或者食品上的細菌是藉由培養計數法,但是此方法需要有合適的培養環境、精確的培養環境控制且也需要2至3天才可以得到結果。PCR及定量PCR (quantitative polymerase chain reaction, qPCR)亦被常用來使用在偵測細菌上,但需要CT值或者標準曲線才可作相對定量。設計Digital PCR藉由將PCR反應試劑分為許多小等份給予了絕對濃度定量並提高偵測靈敏度及改善訊號雜訊比(S/N ratio)。
此論文中,我們製作一可使用digital PCR的高動態偵測範圍的微流體晶片,此晶片可以快速的將樣品分為1,147,040個等份,每一等份為785 fL。此小等份的液體含有目標DNA及足夠的PCR反應物可提高S/N ratio。本論文中,我們利用低濃度的真實細菌樣品去展現此晶片的可行性。但,我們發現在使用10:1 (w/w)的PDMS比例時,經由PCR後孔洞會塌陷或變形;而當我們使用不同的比例混合時,例如:10:2 (w/w)、10:3 (w/w)時,孔洞塌陷或變形的情況會改善。基於此,我們設計的digital PCR晶片不僅可以快速的將液體等分並提高S/N ratio及靈敏度,亦藉由簡單的操作可增強低濃度樣品的偵測準確度。
Here, we describe a digital PCR (polymerase chain reaction) microfluidic chip capable of generating more than 106 droplets within a minute for the quantification of bacteria. Conventionally, bacteria detection and analysis for monitoring the environmental pollution or food contamination are conducted by using the bacteria plate count method, which requires a suitable culture medium, a precise control of culture environment, and takes 2-3 days for collecting the result. PCR and qPCR (quantitative polymerase chain reaction) have also been used for bacteria detection. However, their fluorescence-based readouts need CT values or a standard curve to provide a relative quantification. Therefore, digital PCR (dPCR) is often the method of choice for analyzing low-concentration or complex samples. dPCR provides the absolute DNA concentration with a high sensitivity and an improved signal-to-noise (S/N) ratio by partitioning the PCR reaction into many individual reactions, and its dynamic range is dependent on the number of partitions.
In this study, we have designed and fabricated microfluidic chip to be used in digital PCR that could rapidly separate the sample solution into more than a million (~1,147,040) droplets, each of which is 785- fL in volume. The small volume of each reaction droplet increases the S/N ratio in droplets with positive target DNA templates and allows for efficient PCR using crude bacteria lysate without nucleic acid purification, while the high number of droplets provides a dynamic range of more than six orders of magnitude. We demonstrated the applicability of this chip to quantify the concentration of Escherichia coli (E. Coli). However, we found that many microwells were collapsed or deformed after PCR cycles when the chip was made of polydimethylsiloxane (PDMS) using a typical 10:1 (w/w) monomer to cross-linker ratio. When we used PDMS of different mixing ratios, such as 10:2 (w/w) or 10:3 (w/w), this problem is fixed. Based on these results, we describe a digital PCR microfluidic chip that can rapidly separate the small volume of sample and increase the S/N ratio. Furthermore, digital PCR enhances the accuracy for bacterial detection with simple operation and provides a dynamic range of more than six orders of magnitude.
1. Verpoorte, E. and N.F.d. Rooij, Microfluidics meets MEMS. Proceedings of the IEEE, 2003. 91: p. 903-953.
2. Daw, R. and J. Finkelstein, Lab on a chip. Nature, 2006. 442: p. 367.
3. Manz, A., N. Graber, and H.M. Widmer, Miniaturized Total Chemical-Analysis Systems - a Novel Concept for Chemical Sensing. Sensors and Actuators B-Chemical, Jan 1990. 1: p. 244-248.
4. Haeberle, S. and R. Zengerle, Microfluidic platforms for lab-on-a-chip applications. Lab on a Chip, 2007. 7: p. 1094-1110.
5. Unger, M.A., et al., Monolithic microfabricated valves and pumps by multilayer soft lithography. Science, 2000. 288(5463): p. 113-116.
6. Jeong, O.C., et al., Fabrication of a peristaltic PDMS micropum. Sensors and Actuators a-Physical, 2005. 123(24): p. 453-458.
7. Nguyen and Wu, Micromixers - a review. Journal of Micromechanics and Microengineering, 2005. 15(2): p. R1-R16.
8. Lin, C.-H., et al., A fast prototyping process for fabrication of microfluidic systems on soda-lime glass. JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2001. 11: p. 726-732.
9. Mu, X., et al., Laminar flow used as "liquid etch mask" in wet chemical etching to generate glass microstructures with an improved aspect ratio. Lab Chip, 2009. 9(14): p. 1994-6.
10. Shiroma, L.S., et al., Self-regenerating and hybrid irreversible/reversible PDMS microfluidic devices. Sci Rep, 2016. 6: p. 26032.
11. Huang, B., et al., Counting Low-Copy Number Proteins in a Single Cell. Science, 2007. 315: p. 81-84.
12. Balagaddé, F.K., et al., Long-Term Monitoring of Bacteria Undergoing Programmed Population Control in a Microchemostat. Science, 2005. 309: p. 137-140.
13. McDonald, J.C., et al., Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis, 2000. 21(1): p. 27-40.
14. El-Ali, J., P.K. Sorger, and K.F. Jensen, Cells on chips. Nature, 2006. 442: p. 403.
15. Khademhosseini, A., et al., Microscale technologies for tissue engineering and biology. Proceedings of the National Academy of Sciences of the United States of America, 2006. 103(8): p. 2480-2487.
16. Shim, J.-u., et al., Control and measurement of the phase behavior of aqueous solutions using microfluidics. Journal of the American Chemical Society, 2007. 129(28): p. 8825-8835.
17. Zhou, J.H., et al., Convenient Method for Modifying Poly(Dimethylsiloxane) with Poly(Ethylene Glycol) in Microfluidics. Anal. Chem., 2009. 81: p. 6627-6632.
18. Rolland, J.P., et al., Solvent-Resistant Photocurable “Liquid Teflon” for Microfluidic Device Fabrication. J. Am. Chem. Soc., 2004. 126: p. 2322-2323.
19. Becker, H. and C. Gärtner, Polymer microfabrication technologies for microfluidic systems. Analytical and Bioanalytical Chemistry, 2008. 390(1): p. 89-111.
20. Tsao, C.-W. and D.L. Devoe, Bonding of Thermoplastic Polymer Microfluidics. Microfluid. Nanofluid., 2008. 6: p. 1-16.
21. Neils, C., et al., A. Combinatorial Mixing of Microfluidic Streams. Lab Chip, 2004. 4: p. 342-350.
22. Tsao, C.-W. and D.L. DeVoe, Bonding of thermoplastic polymer microfluidics. Microfluidics and Nanofluidics, 2008. 6(1): p. 1-16.
23. Mullis, K.B. and M. Smith, Decisive progress in gene technology through two new methods: the polymerase chain reaction (PCR) method and site-directed mutagenesis. The Nobel Prize in Chemistry 1993, 1993.
24. Heid, C.A., et al., Real Time Quantitative PCR. GENOME METHODS 1996. 6: p. 986-994.
25. Vogelstein, B. and K.W. Kinzler, Digital PCR. Proc Natl Acad Sci U S A, 1999. 96(16): p. 9236-41.
26. Bian, X., et al., A microfluidic droplet digital PCR for simultaneous detection of pathogenic Escherichia coli O157 and Listeria monocytogenes. Biosensors and Bioelectronics, 2015. 74: p. 770-777.
27. Whale, A.S., et al., Comparison of microfluidic digital PCR and conventional quantitative PCR for measuring copy number variation. Nucleic Acids Research, 2012. 40(11): p. e82-e82.
28. Pohl, G. and M. Shih Ie, Principle and applications of digital PCR. Expert Rev Mol Diagn, 2004. 4(1): p. 41-7.
29. Prediger, E. Digital PCR (dPCR)—What is it and why use it? ; Available from: http://www.idtdna.com/pages/decoded/decoded-articles/core-concepts/decoded/2013/10/21/digital-pcr-(dpcr)-what-is-it-and-why-use-it-.
30. Thurgood, P., et al., Porous PDMS structures for the storage and release of aqueous solutions into fluidic environments. Lab Chip, 2017. 17(14): p. 2517-2527.
31. Theodoridis, G., et al., Study of multiple solid-phase microextraction combined off-line with high performance liquid chromatography: Application in the analysis of pharmaceuticals in urine. Anal. Chem. Acta, 2004. 516: p. 197-204.
32. Toepke, M.W. and D.J. Beebe, PDMS absorption of small molecules and consequences in microfluidic applications. Lab Chip, 2006. 6(12): p. 1484-6.
33. M, K. and O.z. T, Micro-Manufacturing: Design and Manufacturing of Micro-Products. 2011.
34. R, U., et al., Embossed optical waveguides. Appl. Phys. Lett., 1972. 20: p. 213-5.
35. Y, C.S., K.P. R, and R.P. J, Imprint of sub-25 nm vias and trenches in polymers. Appl. Phys. Lett., 1995. 67: p. 3114-6.
36. Peng, L., et al., Micro hot embossing of thermoplastic polymers: a review. Journal of Micromechanics and Microengineering, 2014. 24(1): p. 013001.
37. Xia, Y.N. and G.M. Whitesides, Soft lithography. Annual Review of Materials Science, 1998. 28: p. 153-184.
38. McDonald, J. C., and Whitesides, Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Accounts of Chemical Research, 2002. 35(7): p. 491-499.
39. Jo, B.H., Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer. Journal of Microelectromechanical Systems, 2000. 9(1): p. 76-81.
40. Shen, F., et al., Nanoliter Multiplex PCR Arrays on a SlipChip. Analytical Chemistry, 2010. 82(11): p. 4606-4612.
41. Madic, J., et al., Three-color crystal digital PCR. Biomolecular Detection and Quantification, 2016. 10: p. 34-46.
42. Ottesen, E.A., et al., Microfluidic Digital PCR Enables Multigene Analysis of Individual Environmental Bacteria. Science, 2006. 314(5804): p. 1464.
43. 蕭怡馨, 自動化微流體生物晶片平台之開發, in 奈米工程與微系統研究所. 2017, 國立清華大學: 新竹市. p. 104.
44. Kupka, R.K., Microfabrication: LIGA-X and applications. Applied Surface Science, 2000. 164: p. 97-110.
45. Lorenz, H., High-aspect-ratio, ultrathick, negative-tone near-UV photoresist and its applications for MEMS. Sensors and Actuators a-Physical, 1998. 64(1): p. 33-39.
46. D, B., The contact angle of poly(methyl methacrylate) cast against glass. Langmuir 1990. 6: p. 420-4.
47. K, W.Z., Polymer hydrophilicity and hydrophobicity induced by femtosecond laser direct irradiation. Appl. Phys. Lett., 2009. 95: p. 111110.
48. Sultanovaa, N., S. Kasarovaa, and I. Nikolov, Dispersion Properties of Optical Polymers. ACTA PHYSICA POLONICA A, 2009. 116.
49. Yin, Z., et al., Two dimensional PMMA nanofluidic device fabricated by hot embossing and oxygen plasma assisted thermal bonding methods. Nanotechnology, 2015. 26(21): p. 215302.
50. Z. Wu, N.X., et al., Polymer microchips bonded by O2-plasma activation. Electrophoresis, 2002. 23: p. 782-790.