簡易檢索 / 詳目顯示

研究生: 蔡裴雯
Tsai, Pei-Wen
論文名稱: 人類抗菌胜肽LL-37抑制白色念珠菌貼附之分子機制
Molecular Mechanisms of Human Antimicrobial Peptide LL-37 Inhibiting Candida albicans Adhesion
指導教授: 藍忠昱
Lan, Chung-Yu
口試委員: 藍忠昱
張大慈
張壯榮
楊程堯
羅秀容
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 分子與細胞生物研究所
Institute of Molecular and Cellular Biology
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 87
中文關鍵詞: 白色念珠菌貼附
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 白色念珠菌(C. albicans)為重要的人類伺機性致病真菌之一,其主要存在於人體的黏膜表層,並在免疫力低下的人體造成感染。當白色念珠菌感染時,貼附(adhesion)至宿主的表皮細胞為最重要的第一個步驟。LL-37是一種抗菌胜肽(antimicrobial peptide),通常扮演免疫系統第一道防線的角色,其存在於各種組織以及包括實驗所用的口腔與泌尿生殖道表皮細胞。首先,我們利用塑膠表面、口腔表皮細胞(OECM-1)與母鼠(BALB/c)膀胱進行白色念珠菌的貼附實驗,結果証實LL-37 可經由抑制白色念珠菌貼附而降低其感染力。我們也觀察到,LL-37透過與白色念珠菌細胞壁之甘露聚糖(mannan)、葡聚糖(glucan)與幾丁質(chitin)結合,而使白色念珠菌凝集(aggregation),進而抑制白色念珠菌之貼附。此外,我們也發現LL-37能與細胞壁蛋白質Xog1p形成複合物而抑制白色念珠菌貼附至聚苯乙烯(polystyrene)材質表面。
    利用噬菌體展示(phage display)與酵素連結免疫吸收(ELISA)實驗,我們找到十個可與LL-37結合的胜肽序列,並從這十個胜肽得到一致序列(consensus sequence),經由BLAST搜尋比對顯示,有四段胜肽與白色念珠菌細胞壁β-1,3-葡聚糖外切酶(exoglucanase) Xog1p蛋白質上的序列相符。我們以Xog1p蛋白質上第90至第115的胺基酸序列合成一個短胜肽(Xog1p90–115),並且表現Xog1p的重組蛋白(rXog1p),結果發現 Xog1p90–115和rXog1p會與LL-37結合,使LL-37失去抑制白色念珠菌貼附的能力。LL-37也會降低白色念珠菌細胞壁Xog1蛋白質活性,因此干擾細胞壁之重組(remodeling)。將白色念珠菌XOG1基因剔除(knock-out)後,細胞葡聚糖外切酶的活性、細胞貼附以及與LL-37結合的能力皆降低,使用白色念珠菌細胞壁Xog1蛋白質的抗體(antibody)也會減少其細胞貼 附。因此,藉由LL-37將細胞壁上的糖類(carbohydrate)當做標靶,或其他將Xog1蛋白質當作標靶的化合物,將可能發展為新的藥物,提供防止念珠菌病症的新方法,此外,LL-37也有助於我們篩選其他與真菌細胞貼附相關的細胞壁成分。


    Abstract (English) ---------------------------------------------------------------------------- i Abstract (Chinese) --------------------------------------------------------------------------- ii Contents --------------------------------------------------------------------------------------- iii List of Figures -------------------------------------------------------------------------------- v List of Tables --------------------------------------------------------------------------------- vi Supplementary materials -------------------------------------------------------------------- vii List of papers published during Ph.D. study --------------------------------------------- viii Abbreviation ---------------------------------------------------------------------------------- ix Chapter 1 Introduction--------------------------------------------------------------------- 1 1.1 Candida albicans ---------------------------------------------------------------------- 2 1.2 Candida adhesion --------------------------------------------------------------------- 2 1.3 Candida Cell wall --------------------------------------------------------------------- 2 1.4 Candida Xog1p ------------------------------------------------------------------------ 4 1.5 Antimicrobial peptides ---------------------------------------------------------------- 5 1.6 LL-37, an important human AMP --------------------------------------------------- 6 1.7 Specific aims of this study ------------------------------------------------------------ 7 Chapter 2 Materials and Methods ------------------------------------------------------- 9 2.1 Peptides and reagents ----------------------------------------------------------------- 10 2.2 C. albicans strains, media, and growth conditions -------------------------------- 10 2.3 Assays for LL-37 candidacidal activity -------------------------------------------- 12 2.4 C. albicans adhesion to polystyrene Candida Xog1p ---------------------------- 12 2.5 Microscopic visualization of floating C. albicans cells--------------------------- 14 2.6 Assays for LL-37 binding to floating C. albicans cells -------------------------- 14 2.7 Binding of antimicrobial peptides to C. albicans cells---------------------------- 14 2.8 Binding of LL-37 to polysaccharides ----------------------------------------------- 15 2.9 Measurement of dissociation constants for LL-37/mannan complexes -------- 15 2.10 Adhesion of C. albicans to oral epidermal cells --------------------------------- 16 2.11 Mouse model for C. albicans adhesion ------------------------------------------- 16 2.12 CWP extraction and western blotting --------------------------------------------- 17 2.13 Identification of LL-37-binding proteins by phage-display biopanning ----- 18 2.14 Characterization of cloned, LL-37-binding phage ------------------------------ 19 2.15 Searching for the potential LL-37 interacting proteins from Candida Genome Database (CGD) ---------------------------------------------------------- 20 2.16 ELISA for LL-37 /Xog190–115 association ---------------------------------------- 21 2.17 Expression, purification, and refolding of recombinant Xog1p --------------- 21 2.18 Preparation and purification of polyclonal antibodies against C. albicans Xog1p --------------------------------------------------------------------------------- 22 2.19 Interaction of LL-37 and rXog1p ------------------------------------------------- 23 2.20 Glucanase activity assay ----------------------------------------------------------- 24 2.21 Cell susceptibility to agents that interrupt cell-wall integrity ----------------- 24 2.22 Construction of C. albicans mutant strains and Southern blotting ----------- 25 2.23 RNA isolation and reverse transcriptase-PCR ---------------------------------- 26 2.24 Statistical analysis ------------------------------------------------------------------ 27 2.25 Accession numbers of XOG1 and EXG2 sequences --------------------------- 27 Chapter 3 Results -------------------------------------------------------------------------- 28 Part I Human Antimicrobial Peptide LL-37 Inhibits Adhesion of Candida albicans by interacting with Yeast Cell-Wall Carbohydrates --------------- 29 3.1 LL-37 kills C. albicans ----------------------------------------------------------- 30 3.2 LL-37 affects adhesion of C. albicans to polystyrene ------------------------ 30 3.3 LL-37 induces cell aggregation and reduces cell attachment to polystyrene by directly binding to C. albicans ------------------------------- 31 3.4 LL-37 binds to C. albicans cell-wall polysaccharides and thereby reduces C. albicans adhesion --------------------------------------------------- 33 3.5 Effects of LL-37 on C. albicans adhesion to oral epidermal cells and the urinary bladders of mice ----------------------------------------------- 35 Part II Characterizing the Role of Cell-Wall β -1,3-Exoglucanase Xog1p in Candida albicans Adhesion by the Human Antimicrobial Peptide LL-37 ----------------------------------------------------------------------------- 45 3.6 Binding of LL-37 to C. albicans CWPs -------------------------------------- 46 3.7 Xog1p: an LL-37-binding target identified by phage-display biopanning ------------------------------------------------------------------------ 46 3.8 LL-37 associates with Xog1p -------------------------------------------------- 47 3.9 Roles of Xog1p in LL-37-mediated inhibition of C. albicans adhesion --------------------------------------------------------------------------- 48 3.10 Xog1p is involved in C. albicans adhesion --------------------------------- 49 Chapter 4 Discussion --------------------------------------------------------------------- 61 Chapter 5 Conclusion and future perspectives ------------------------------------- 68 References ---------------------------------------------------------------------------------- 71 Supplementary Materials --------------------------------------------------------------- 80 List of Figures Figure 1 Layer structure of fungal cell wall -------------------------------------------- 3 Figure 2 Structure of Xog1p -------------------------------------------------------------- 4 Figure 3 Sequence of the human cathelicidin ------------------------------------------- 7 Figure 4 Helical wheel diagram of LL-37 ----------------------------------------------- 7 Figure I-1 Candidacidal activity of LL-37 ---------------------------------------------- 37 Figure I-2 Adhesion of LL-37-treated cells to polypropylene centrifugation tubes ---------------------------------------------------------------------------- 38 Figure I-3 Inhibition of C. albicans adhesion by LL-37 ------------------------------ 39 Figure I-4 LL-37-induced C. albicans cell aggregation and LL-37 binding to C. albicans --------------------------------------------------------------------- 40 Figure I-5 The inhibition of cell adhesion caused by LL-37 is the result of peptide-cell binding and cell-cell aggregation ---------------------------- 41 Figure I-6 Binding of LL-37 to Candida cell-wall polysaccharides reduces Candida adhesion to polystyrene ------------------------------------------- 43 Figure I-7 LL-37 inhibits C. albicans attachment to oral epidermal cells and mouse bladder mucosa ------------------------------------------------------- 44 Figure II-1 Binding of LL-37 to C. albicans cell-wall proteins ---------------------- 52 Figure II-2 Identification of potential LL-37-binding peptides by phage display -------------------------------------------------------------------------- 53 Figure II-3 Expression of full-length Xog1p and its interaction with LL-37 ------- 54 Figure II-4 Xog1p plays a role in LL-37-mediated inhibition of C. albicans adhesion ------------------------------------------------------------------------ 55 Figure II-5 XOG1 deletion reduces C. albicans adhesion to polystyrene and decreases cell association with LL-37 -------------------------------------- 57 Figure II-6 EXG2 has no significant effect on C. albicans cell adhesion or cellular interaction with LL-37 ---------------------------------------------- 59 Figure II-7 Xog1p plays a role in the adhesion of C. albicans to polystyrene ------ 60 List of Tables Table 1 Potential limitations of antimicrobial peptides development ---------------- 5 Table 2 Strains of Candida albicans used in this study -------------------------------- 11 Table 3 Properties of AMPs used in this study ------------------------------------------ 32 Supplementary Materials Figure S1 LL-37 binding to Candida was examined by immunohistochemistry --- 81 Figure S2 Flow cytometric analysis of LL-37 binding to C. albicans cells --------- 82 Figure S3 The Xog1p90-112 is exposed on structural surface --------------------------- 83 Figure S4 ELISA analysis of the interaction between rXog1p and LL-37 ----------- 84 Figure S5 One of the LL-37 binding proteins was Xog1 which soluble form could compete the effects of LL-37 ------------------------------------------ 85 Figure S6 XOG1 mutant strains attach to urinary bladders of mice ------------------- 86 Figure S7 The sequence alignment of Xog1p and Exg2p ------------------------------- 87

    1. Odds FC (1979) Candida and candidosis. Maryland: University Park Press: 382 p.
    2. Calderone RA (2002) Candida and Candidiasis. Washington DC: ASM Press: 451 p.
    3. Kauffman CA (2006) Fungal infections. Proc Am Thorac Soc 3: 35-40.
    4. Wenzel RP (2005) John E. Bennett Forum on Deep Mycoses Study Design 2004: Candidiasis and salvage therapy for aspergillosis. Clin Infect Dis 41 Suppl 6: S369-370.
    5. Naglik JR, Challacombe SJ, Hube B (2003) Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiol Mol Biol Rev 67: 400-428.
    6. Wilson D, Thewes S, Zakikhany K, Fradin C, Albrecht A, et al. (2009) Identifying infection-associated genes of Candida albicans in the postgenomic era. FEMS Yeast Res 9: 688-700.
    7. Filler SG, Sheppard DC (2006) Fungal invasion of normally non-phagocytic host cells. PLoS Pathog 2: e129.
    8. Filler SG (2006) Candida-host cell receptor-ligand interactions. Curr Opin Microbiol 9: 333-339.
    9. Tronchin G, Pihet M, Lopes-Bezerra LM, Bouchara JP (2008) Adherence mechanisms in human pathogenic fungi. Med Mycol 46: 749-772.
    10. Zhu W, Filler SG (2010) Interactions of Candida albicans with epithelial cells. Cell Microbiol 12: 273-282.
    11. Bowman SM, Free SJ (2006) The structure and synthesis of the fungal cell wall. Bioessays 28: 799-808.
    12. Latge JP (2007) The cell wall: a carbohydrate armour for the fungal cell. Mol Microbiol 66: 279-290.
    13. Brown JA, Catley BJ (1992) Monitoring Polysaccharide Synthesis in Candida-Albicans. Carbohydrate Research 227: 195-202.
    14. Klis FM, de Groot P, Hellingwerf K (2001) Molecular organization of the cell wall of Candida albicans. Med Mycol 39 Suppl 1: 1-8.
    15. Klis FM, Sosinska GJ, de Groot PW, Brul S (2009) Covalently linked cell wall proteins of Candida albicans and their role in fitness and virulence. FEMS Yeast Res 9: 1013-1028.
    16. Chaffin WL, Lopez-Ribot JL, Casanova M, Gozalbo D, Martinez JP (1998) Cell wall and secreted proteins of Candida albicans: identification, function, and expression. Microbiol Mol Biol Rev 62: 130-180.
    17. Nather K, Munro CA (2008) Generating cell surface diversity in Candida albicans and other fungal pathogens. FEMS Microbiol Lett 285: 137-145.
    18. McKenzie CG, Koser U, Lewis LE, Bain JM, Mora-Montes HM, et al. (2010) Contribution of Candida albicans cell wall components to recognition by and escape from murine macrophages. Infect Immun 78: 1650-1658.
    19. Lopez-Ribot JL, Alloush HM, Masten BJ, Chaffin WL (1996) Evidence for presence in the cell wall of Candida albicans of a protein related to the hsp70 family. Infect Immun 64: 3333-3340.
    20. Alloush HM, Lopez-Ribot JL, Masten BJ, Chaffin WL (1997) 3-phosphoglycerate kinase: a glycolytic enzyme protein present in the cell wall of Candida albicans. Microbiology 143 ( Pt 2): 321-330.
    21. de Nobel JG, Klis FM, Priem J, Munnik T, van den Ende H (1990) The glucanase-soluble mannoproteins limit cell wall porosity in Saccharomyces cerevisiae. Yeast 6: 491-499.
    22. Casanova M, Lopez-Ribot JL, Martinez JP, Sentandreu R (1992) Characterization of cell wall proteins from yeast and mycelial cells of Candida albicans by labelling with biotin: comparison with other techniques. Infect Immun 60: 4898-4906.
    23. Rast DM, Baumgartner D, Mayer C, Hollenstein GO (2003) Cell wall-associated enzymes in fungi. Phytochemistry 64: 339-366.
    24. Chaffin WL (2008) Candida albicans cell wall proteins. Microbiol Mol Biol Rev 72: 495-544.
    25. Nimrichter L, Rodrigues ML, Rodrigues EG, Travassos LR (2005) The multitude of targets for the immune system and drug therapy in the fungal cell wall. Microbes Infect 7: 789-798.
    26. Wheeler RT, Fink GR (2006) A drug-sensitive genetic network masks fungi from the immune system. PLoS Pathog 2: e35.
    27. Lesage G, Bussey H (2006) Cell wall assembly in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 70: 317-343.
    28. Adams DJ (2004) Fungal cell wall chitinases and glucanases. Microbiology 150: 2029-2035.
    29. Larriba G, Andaluz E, Cueva R, Basco RD (1995) Molecular biology of yeast exoglucanases. FEMS Microbiol Lett 125: 121-126.
    30. San Segundo P, Correa J, Vazquez de Aldana CR, del Rey F (1993) SSG1, a gene encoding a sporulation-specific 1,3-beta-glucanase in Saccharomyces cerevisiae. J Bacteriol 175: 3823-3837.
    31. Castillo L, Martinez AI, Garcera A, Garcia-Martinez J, Ruiz-Herrera J, et al. (2006) Genomic response programs of Candida albicans following protoplasting and regeneration. Fungal Genet Biol 43: 124-134.
    32. Luna-Arias JP, Andaluz E, Ridruejo JC, Olivero I, Larriba G (1991) The major exoglucanase from Candida albicans: a non-glycosylated secretory monomer related to its counterpart from Saccharomyces cerevisiae. Yeast 7: 833-841.
    33. Chambers RS, Walden AR, Brooke GS, Cutfield JF, Sullivan PA (1993) Identification of a Putative Active-Site Residue in the Exo-Beta-(1,3)-Glucanase of Candida-Albicans. Febs Letters 327: 366-369.
    34. Stubbs HJ, Brasch DJ, Emerson GW, Sullivan PA (1999) Hydrolase and transferase activities of the beta-1,3-exoglucanase of Candida albicans. Eur J Biochem 263: 889-895.
    35. Gonzalez MM, Diez-Orejas R, Molero G, Alvarez AM, Pla J, et al. (1997) Phenotypic characterization of a Candida albicans strain deficient in its major exoglucanase. Microbiology 143 ( Pt 9): 3023-3032.
    36. Cutfield SM, Davies GJ, Murshudov G, Anderson BF, Moody PC, et al. (1999) The structure of the exo-beta-(1,3)-glucanase from Candida albicans in native and bound forms: relationship between a pocket and groove in family 5 glycosyl hydrolases. J Mol Biol 294: 771-783.
    37. Doss M, White MR, Tecle T, Hartshorn KL (2010) Human defensins and LL-37 in mucosal immunity. Journal of Leukocyte Biology 87: 79-92.
    38. Steele C, Fidel PL, Jr. (2002) Cytokine and chemokine production by human oral and vaginal epithelial cells in response to Candida albicans. Infect Immun 70: 577-583.
    39. Dale BA, Fredericks LP (2005) Antimicrobial peptides in the oral environment: expression and function in health and disease. Curr Issues Mol Biol 7: 119-133.
    40. Feng Z, Jiang B, Chandra J, Ghannoum M, Nelson S, et al. (2005) Human beta-defensins: differential activity against candidal species and regulation by Candida albicans. J Dent Res 84: 445-450.
    41. De Smet K, Contreras R (2005) Human antimicrobial peptides: defensins, cathelicidins and histatins. Biotechnol Lett 27: 1337-1347.
    42. Dietrich DE, Xiao X, Dawson DV, Belanger M, Xie H, et al. (2008) Human alpha- and beta-defensins bind to immobilized adhesins from Porphyromonas gingivalis. Infect Immun 76: 5714-5720.
    43. den Hertog AL, van Marle J, van Veen HA, Van't Hof W, Bolscher JG, et al. (2005) Candidacidal effects of two antimicrobial peptides: histatin 5 causes small membrane defects, but LL-37 causes massive disruption of the cell membrane. Biochem J 388: 689-695.
    44. Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415: 389-395.
    45. Lai Y, Gallo RL (2009) AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense. Trends Immunol 30: 131-141.
    46. Hancock RE, Sahl HG (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 24: 1551-1557.
    47. Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3: 238-250.
    48. Sahl HG, Pag U, Bonness S, Wagner S, Antcheva N, et al. (2005) Mammalian defensins: structures and mechanism of antibiotic activity. Journal of Leukocyte Biology 77: 466-475.
    49. Park CB, Kim HS, Kim SC (1998) Mechanism of action of the antimicrobial peptide buforin II: Buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. Biochemical and Biophysical Research Communications 244: 253-257.
    50. Takeshima K, Chikushi A, Lee KK, Yonehara S, Matsuzaki K (2003) Translocation of analogues of the antimicrobial peptides magainin and buforin across human cell membranes. Journal of Biological Chemistry 278: 1310-1315.
    51. Jenssen H, Hamill P, Hancock RE (2006) Peptide antimicrobial agents. Clin Microbiol Rev 19: 491-511.
    52. Zaiou M, Gallo RL (2002) Cathelicidins, essential gene-encoded mammalian antibiotics. J Mol Med 80: 549-561.
    53. Sorensen OE, Follin P, Johnsen AH, Calafat J, Tjabringa GS, et al. (2001) Human cathelicidin, hCAP-18, is processed to the antimicrobial peptide LL-37 by extracellular cleavage with proteinase 3. Blood 97: 3951-3959.
    54. Gudmundsson GH, Agerberth B, Odeberg J, Bergman T, Olsson B, et al. (1996) The human gene FALL39 and processing of the cathelin precursor to the antibacterial peptide LL-37 in granulocytes. Eur J Biochem 238: 325-332.
    55. Zanetti M (2004) Cathelicidins, multifunctional peptides of the innate immunity. J Leukoc Biol 75: 39-48.
    56. Burton MF, Steel PG (2009) The chemistry and biology of LL-37. Nat Prod Rep 26: 1572-1584.
    57. Agerberth B, Gunne H, Odeberg J, Kogner P, Boman HG, et al. (1995) FALL-39, a putative human peptide antibiotic, is cysteine-free and expressed in bone marrow and testis. Proc Natl Acad Sci U S A 92: 195-199.
    58. Bals R (2000) Epithelial antimicrobial peptides in host defense against infection. Respir Res 1: 141-150.
    59. Nijnik A, Hancock RE (2009) The roles of cathelicidin LL-37 in immune defences and novel clinical applications. Curr Opin Hematol 16: 41-47.
    60. Mendez-Samperio P (2010) The human cathelicidin hCAP18/LL-37: a multifunctional peptide involved in mycobacterial infections. Peptides 31: 1791-1798.
    61. Kai-Larsen Y, Agerberth B (2008) The role of the multifunctional peptide LL-37 in host defense. Front Biosci 13: 3760-3767.
    62. Ciornei CD, Sigurdardottir T, Schmidtchen A, Bodelsson M (2005) Antimicrobial and chemoattractant activity, lipopolysaccharide neutralization, cytotoxicity, and inhibition by serum of analogs of human cathelicidin LL-37. Antimicrob Agents Chemother 49: 2845-2850.
    63. Zanetti M (2005) The role of cathelicidins in the innate host defenses of mammals. Curr Issues Mol Biol 7: 179-196.
    64. Chromek M, Slamova Z, Bergman P, Kovacs L, Podracka L, et al. (2006) The antimicrobial peptide cathelicidin protects the urinary tract against invasive bacterial infection. Nat Med 12: 636-641.
    65. Mookherjee N, Lippert DN, Hamill P, Falsafi R, Nijnik A, et al. (2009) Intracellular receptor for human host defense peptide LL-37 in monocytes. J Immunol 183: 2688-2696.
    66. Tsai PW, Yang CY, Chang HT, Lan CY (2011) Human Antimicrobial Peptide LL-37 Inhibits Adhesion of Candida albicans by Interacting with Yeast Cell-Wall Carbohydrates. PLoS One 6: e17755.
    67. Zasloff M (2006) Defending the epithelium. Nat Med 12: 607-608.
    68. Foschiatti M, Cescutti P, Tossi A, Rizzo R (2009) Inhibition of cathelicidin activity by bacterial exopolysaccharides. Mol Microbiol 72: 1137-1146.
    69. Bergsson G, Reeves EP, McNally P, Chotirmall SH, Greene CM, et al. (2009) LL-37 complexation with glycosaminoglycans in cystic fibrosis lungs inhibits antimicrobial activity, which can be restored by hypertonic saline. J Immunol 183: 543-551.
    70. Bowdish DM, Davidson DJ, Scott MG, Hancock RE (2005) Immunomodulatory activities of small host defense peptides. Antimicrob Agents Chemother 49: 1727-1732.
    71. Bowdish DM, Davidson DJ, Lau YE, Lee K, Scott MG, et al. (2005) Impact of LL-37 on anti-infective immunity. J Leukoc Biol 77: 451-459.
    72. Overhage J, Campisano A, Bains M, Torfs EC, Rehm BH, et al. (2008) Human host defense peptide LL-37 prevents bacterial biofilm formation. Infect Immun 76: 4176-4182.
    73. Nett J, Lincoln L, Marchillo K, Massey R, Holoyda K, et al. (2007) Putative role of beta-1,3 glucans in Candida albicans biofilm resistance. Antimicrob Agents Chemother 51: 510-520.
    74. Phan QT, Myers CL, Fu Y, Sheppard DC, Yeaman MR, et al. (2007) Als3 is a Candida albicans invasin that binds to cadherins and induces endocytosis by host cells. PLoS Biol 5: e64.
    75. Meletiadis J, Mouton JW, Meis JF, Bouman BA, Donnelly JP, et al. (2001) Colorimetric assay for antifungal susceptibility testing of Aspergillus species. J Clin Microbiol 39: 3402-3408.
    76. Kohatsu L, Hsu DK, Jegalian AG, Liu FT, Baum LG (2006) Galectin-3 induces death of Candida species expressing specific beta-1,2-linked mannans. J Immunol 177: 4718-4726.
    77. Yu Y, Huang H, Feng K, Pan M, Yuan S, et al. (2007) A short-form C-type lectin from amphioxus acts as a direct microbial killing protein via interaction with peptidoglycan and glucan. J Immunol 179: 8425-8434.
    78. Tseng MC, Chang YP, Chu YH (2007) Quantitative measurements of vancomycin binding to self-assembled peptide monolayers on chips by quartz crystal microbalance. Anal Biochem 371: 1-9.
    79. Li XS, Reddy MS, Baev D, Edgerton M (2003) Candida albicans Ssa1/2p is the cell envelope binding protein for human salivary histatin 5. J Biol Chem 278: 28553-28561.
    80. de Groot PW, de Boer AD, Cunningham J, Dekker HL, de Jong L, et al. (2004) Proteomic analysis of Candida albicans cell walls reveals covalently bound carbohydrate-active enzymes and adhesins. Eukaryot Cell 3: 955-965.
    81. Chang HT, Chao CH, Lin YF, Tseng LJ, Pai TW, et al. (2010) Prediction of Regulatory Molecules for Enhancement of EGFR Overexpression Triggered by Signal Peptide of Ribonuclease 3. In: Barolli L, F. X, Vitabile S, Hsu HH, editors. Proceeding of 2010 IEEE International Conference on Complex, Intelligent and Software Intensive Systems. Krakow, Poland: IEEE publisher. pp. 672-676.
    82. Reuss O, Vik A, Kolter R, Morschhauser J (2004) The SAT1 flipper, an optimized tool for gene disruption in Candida albicans. Gene 341: 119-127.
    83. Sambrook J, Russell D (2001) Molecular Cloning: A Laboratory Manual. Third Edition. New York: Cold Spring Harbor Laboratory Press: 2344 p.
    84. Verstrepen KJ, Klis FM (2006) Flocculation, adhesion and biofilm formation in yeasts. Mol Microbiol 60: 5-15.
    85. Andersson E, Rydengard V, Sonesson A, Morgelin M, Bjorck L, et al. (2004) Antimicrobial activities of heparin-binding peptides. Eur J Biochem 271: 1219-1226.
    86. Masuoka J (2004) Surface glycans of Candida albicans and other pathogenic fungi: physiological roles, clinical uses, and experimental challenges. Clin Microbiol Rev 17: 281-310.
    87. Miyakawa Y, Kuribayashi T, Kagaya K, Suzuki M, Nakase T, et al. (1992) Role of specific determinants in mannan of Candida albicans serotype A in adherence to human buccal epithelial cells. Infect Immun 60: 2493-2499.
    88. Samaranayake LP, Keung Leung W, Jin L (2009) Oral mucosal fungal infections. Periodontol 2000 49: 39-59.
    89. Kauffman CA (2005) Candiduria. Clin Infect Dis 41 Suppl 6: S371-376.
    90. Chapman T, Kinsman O, Houston J (1992) Chitin biosynthesis in Candida albicans grown in vitro and in vivo and its inhibition by nikkomycin Z. Antimicrob Agents Chemother 36: 1909-1914.
    91. Hell E, Giske CG, Nelson A, Romling U, Marchini G (2010) Human cathelicidin peptide LL37 inhibits both attachment capability and biofilm formation of Staphylococcus epidermidis. Lett Appl Microbiol 50: 211-215.
    92. Li Y, Li X, Li H, Lockridge O, Wang G (2007) A novel method for purifying recombinant human host defense cathelicidin LL-37 by utilizing its inherent property of aggregation. Protein Expr Purif 54: 157-165.
    93. Shibata N, Ichikawa T, Tojo M, Takahashi M, Ito N, et al. (1985) Immunochemical study on the mannans of Candida albicans NIH A-207, NIH B-792, and J-1012 strains prepared by fractional precipitation with cetyltrimethylammonium bromide. Arch Biochem Biophys 243: 338-348.
    94. Li RK, Cutler JE (1993) Chemical definition of an epitope/adhesin molecule on Candida albicans. J Biol Chem 268: 18293-18299.
    95. Dromer F, Chevalier R, Sendid B, Improvisi L, Jouault T, et al. (2002) Synthetic analogues of beta-1,2 oligomannosides prevent intestinal colonization by the pathogenic yeast Candida albicans. Antimicrob Agents Chemother 46: 3869-3876.
    96. Sandini S, La Valle R, De Bernardis F, Macri C, Cassone A (2007) The 65 kDa mannoprotein gene of Candida albicans encodes a putative beta-glucanase adhesin required for hyphal morphogenesis and experimental pathogenicity. Cell Microbiol 9: 1223-1238.
    97. Frick IM, Karlsson C, Morgelin M, Olin AI, Janjusevic R, et al. (2008) Identification of a novel protein promoting the colonization and survival of Finegoldia magna, a bacterial commensal and opportunistic pathogen. Mol Microbiol 70: 695-708.
    98. Pingel LC, Kohlgraf KG, Hansen CJ, Eastman CG, Dietrich DE, et al. (2008) Human beta-defensin 3 binds to hemagglutinin B (rHagB), a non-fimbrial adhesin from Porphyromonas gingivalis, and attenuates a pro-inflammatory cytokine response. Immunol Cell Biol 86: 643-649.
    99. Maisch PA, Calderone RA (1981) Role of Surface Mannan in the Adherence of Candida-Albicans to Fibrin-Platelet Clots Formed Invitro. Infection and Immunity 32: 92-97.
    100. Harris M, Mora-Montes HM, Gow NA, Coote PJ (2009) Loss of mannosylphosphate from Candida albicans cell wall proteins results in enhanced resistance to the inhibitory effect of a cationic antimicrobial peptide via reduced peptide binding to the cell surface. Microbiology 155: 1058-1070.
    101. Zaporozhets TS, Makarenkova ID, Bakunina I, Burtseva Iu V, Kusaikin MI, et al. (2010) [Inhibition of adherence of Corynebacterium diphtheriae to human buccal epithelium by glycoside hydrolases from marine hydrobiontes]. Biomed Khim 56: 351-359.
    102. Wheeler RT, Kombe D, Agarwala SD, Fink GR (2008) Dynamic, morphotype-specific Candida albicans beta-glucan exposure during infection and drug treatment. PLoS Pathog 4: e1000227.
    103. Loit E, Hincke MT, Altosaar I (2010) Synthetic antimicrobial peptide L8 (MHLHKTSRVTLYLL) has membrane permeabilisation and bacterial aggregation activity. Int J Antimicrob Agents 35: 410-411.
    104. Tecle T, White MR, Gantz D, Crouch EC, Hartshorn KL (2007) Human neutrophil defensins increase neutrophil uptake of influenza A virus and bacteria and modify virus-induced respiratory burst responses. J Immunol 178: 8046-8052.
    105. Yang D, Biragyn A, Hoover DM, Lubkowski J, Oppenheim JJ (2004) Multiple roles of antimicrobial defensins, cathelicidins, and eosinophil-derived neurotoxin in host defense. Annu Rev Immunol 22: 181-215.
    106. Kai-Larsen Y, Luthje P, Chromek M, Peters V, Wang X, et al. (2010) Uropathogenic Escherichia coli modulates immune responses and its curli fimbriae interact with the antimicrobial peptide LL-37. PLoS Pathog 6: e1001010.
    107. Li XWS, Sun JNN, Okamoto-Shibayama K, Edgerton M (2006) Candida albicans cell wall Ssa proteins bind and facilitate import of salivary histatin 5 required for toxicity. Journal of Biological Chemistry 281: 22453-22463.
    108. Hoyer LL (2001) The ALS gene family of Candida albicans. Trends Microbiol 9: 176-180.
    109. La Valle R, Sandini S, Gomez MJ, Mondello F, Romagnoli G, et al. (2000) Generation of a recombinant 65-kilodalton mannoprotein, a major antigen target of cell-mediated immune response to Candida albicans. Infect Immun 68: 6777-6784.
    110. Naglik J, Albrecht A, Bader O, Hube B (2004) Candida albicans proteinases and host/pathogen interactions. Cell Microbiol 6: 915-926.
    111. Torosantucci A, Chiani P, Bromuro C, De Bernardis F, Palma AS, et al. (2009) Protection by anti-beta-glucan antibodies is associated with restricted beta-1,3 glucan binding specificity and inhibition of fungal growth and adherence. PLoS One 4: e5392.
    112. Moura-Tamames SA, Ramos MJ, Fernandes PA (2009) Modelling beta-1,3-exoglucanase-saccharide interactions: structure of the enzyme-substrate complex and enzyme binding to the cell wall. J Mol Graph Model 27: 908-920.
    113. Kollar R, Petrakova E, Ashwell G, Robbins PW, Cabib E (1995) Architecture of the yeast cell wall. The linkage between chitin and beta(1-->3)-glucan. J Biol Chem 270: 1170-1178.
    114. Tsai PW, Yang CY, Chang HT, Lan CY (2011) Characterizing the role of cell-wall beta-1,3-exoglucanase Xog1p in Candida albicans adhesion by the human antimicrobial peptide LL-37. PLoS One 6: e21394.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE