簡易檢索 / 詳目顯示

研究生: 王昱融
Wang, Yu-Jung
論文名稱: 應用於可見光通信的直流偏置光正交分頻多工收發器之設計與實現
Design and Implementation of a DCO-OFDM Transceiver for Visible Light Communications
指導教授: 馬席彬
Ma, Hsi-Pin
口試委員: 黃元豪
Huang, Yuan-Hao
蔡佩芸
Tasi, Pei-Yun
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 74
中文關鍵詞: 可見光通訊直流偏置光正交分頻多工收發機
外文關鍵詞: visible light communication, DCO-OFDM, transceiver
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本篇論文中,我們實現基於直流偏置光正交分頻多工(DCO-OFDM)的可見光通訊(Visible Light Communication)收發機。整合收發機電路與紅色發光二極體(LED)後,可以在15公分的傳輸距離達到傳輸速率每秒24百萬位元。
    可見光通訊系統是由我們與工研院合作完成,工研院主要負責前端模組、乙太網路、數位類比轉換器(ADC/DAC),而我們主要負責基頻收發機電路。根據工研院所提供的前端電路,我們共同擬訂適合的系統規格。在此系統中,我們使用16正交振幅調變技術(16-QAM)與1024個子載波。為了克服多路徑效應造成的影響,我們的系統採用1/16符元長度的循環字首(Cyclic Prefix)。在傳送端中,子載波會間隔地放置領航信號(Pilot Signal)。在接收端中,我們可以利用領航信號估測訊號的相位旋轉,補償取樣時脈偏移(Sampling Clock Offset)造成的影響。在傳送端中我們加入前置符元(Preamble),並且在接收機中基於Park演算法完成時間同步。另外,為了補償通道效應,我們在接收機中採用一階等化器。最後,我們採用部分傳輸序列(Partial Transmit Sequence)結合限幅技術,並且降低系統峰均能量比約4分貝。
    前端電路的通道訊雜比(Signal-to-noise Ratio)約為22分貝,可提供頻寬為20百萬赫茲。整合前端電路後,在傳輸距離15公分的情況下為無誤碼,並且頻譜使用效率為1.2(位元/秒/赫茲)。我們利用工研院提供的封包產生器驗證收發機至少可達每秒24百萬位元的傳輸速率。最後,我們可以利用此可見光系統傳遞並播放720p高解析影片。透過紅色光傳輸,影片可以穩定且無遺失封包地播放。


    In this thesis, we have implemented a DC-bias optical orthogonal frequency division multiplexing (DCO-OFDM) transceiver for visible light communications (VLC). Based on red light-emitting diode (LED), the data rate has reached 24 Mbps under 15 cm transmission distance.

    We have collaborated with the Industrial Technology Research Institute (ITRI). ITRI members have implemented the front-end modules, the Ethernet, and the analog-to-digital converter/digital-to-analog converter (ADC/DAC), and we have implemented the baseband transceiver circuits. According to the front-end circuits provided by ITRI, we worked out the appropriate system specifications. In this system, we adopted 16 quadrature amplitude modulation (16-QAM) and 1024 subcarriers. To overcome the effects of multipath, we used the cyclic prefix (CP) which is 1/16 the length of the symbol time. At the receiver, we used the pilot signals to estimate the phase rotation of the signals and compensated the effects of sampling clock offset (SCO). We added preamble at the transmitter and completed time synchronization based on Park algorithm. In addition, in order to compensate the channel effect, we used the one tap equalizer at the receiver. Finally, we used partial transmit sequence (PTS) technique combined with clipping method and reduced the maximum peak-to-average power ratio (PAPR) of the system by about 4 dB.

    The channel signal-to-noise ratio (SNR) of the front-end circuits is about 22 dB, and the bandwidth is 20 MHz. After integrating the front-end circuits, there is no error bit in the system under 15 cm transmission distance, and the spectral efficiency is 1.2 bit/sec/Hz. We use the packet generator to verify that this transceiver can achieve transmission rates of 24 Mbps. Finally, we can use this VLC system to transmit and play 720p high definition video. Through red LED transmission, video can be played steadily without loss of packets.

    Abstract i 1 Introduction 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 System Description 5 2.1 Overview of Indoor VLC System . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3 OFDM System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.4 Modulation Schemes for VLC . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.4.1 On-off Keying (OOK) . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.4.2 Pulse Amplitude Modulation (PAM) . . . . . . . . . . . . . . . . . . 11 2.4.3 Variable Pulse Position Modulation (VPPM) . . . . . . . . . . . . . 12 2.4.4 DC-biased Optical OFDM . . . . . . . . . . . . . . . . . . . . . . . 13 2.4.5 Asymmetrically Clipped Optical OFDM . . . . . . . . . . . . . . . . 15 2.5 Optoelectronic Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.5.1 Electrical-optical Transducers . . . . . . . . . . . . . . . . . . . . . 18 2.5.2 Photosensitive Components . . . . . . . . . . . . . . . . . . . . . . 18 3 System Design 21 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.2 Design and Verification Flow . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.3 System Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.4 DCO-OFDM System Model . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.4.1 Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.4.2 Subcarrier Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.4.3 Inverse Fast Fourier Transform (IFFT) and Fast Fourier Transform (FFT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.4.4 Cyclic Prefix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.4.5 Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.4.6 Channel Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.5 PAPR Reduction Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.5.1 Signal Distortion Techniques . . . . . . . . . . . . . . . . . . . . . . 39 3.5.2 Signal Scrambling Techniques . . . . . . . . . . . . . . . . . . . . . 40 3.5.3 Combination of PAPR Reduction Technique . . . . . . . . . . . . . . 43 3.6 Data Rate Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4 Architecture Design 47 4.1 Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.2 Subcarrier Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.3 Fast Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.4 Timing Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.5 Sampling Clock Offset Estimation and Compensation . . . . . . . . . . . . . 51 4.6 PAPR Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 5 Implementation Results 55 5.1 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5.1.1 PAPR Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5.1.2 Timing Synchronization . . . . . . . . . . . . . . . . . . . . . . . . 58 5.1.3 Sampling Clock Offset Compensation . . . . . . . . . . . . . . . . . 59 5.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 5.3 Utilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5.4 Bit Error Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 5.5 Performance Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 6 Conclusions and Future Works 69 6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 6.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Bibliography 74

    [1] M. Uysal and H. Nouri, “Optical Wireless Communications – An Emerging Technology.” in Proc. 16th ICTON, Jul. 2014, pp. 1–7.
    [2] H. Elgala, R. Mesleh, and H. Haas, “Indoor Optical Wireless Communication: Potential
    and State-of-the-art,” IEEE Communications Magazine, vol. 49, pp. 56–62, Oct. 2011.
    [3] R. Mar, C. Cugnasca, C. L. Marte, and G. Gentile, “Intelligent Transport Systems and
    Visible Light Communication Applications: An Overview.” in Proc. 2016 IEEE 19th
    International Conference on Intelligent Transportation Systems (ITSC), Nov. 2016, pp.
    2101–2106.
    [4] L. Grobe, A. Paraskevopoulos, J. Hilt, D. Schulz, F. Lassak, F. Hartlieb, C. Kottke,
    V. Jungnickel, and K.-D. Langer, “High-Speed Visible Light Communication Systems,”
    IEEE Communications Magazine, vol. 51, pp. 60–66, Dec. 2013.
    [5] S. Ayub, S. Kariyawasam, M. Honary, and B. Honary, “A Practical Approach of VLC
    Architecture for Smart City.” in Proc. Loughborough Antennas and Propagation Conference (LAPC), Nov. 2013, pp. 106–111.
    [6] C. Wang, H.-Y. Yu, and Y.-J. Zhu, “A Long Distance Underwater Visible Light Communication System With Single Photon Avalanche Diode,” IEEE Photonics Journal, vol. 8,
    Oct. 2016.
    [7] B. Lin, X. Tang, Z. Ghassemlooy, C. Lin, and Y. Li, “Experimental Demonstration of an
    Indoor VLC Positioning System Based on OFDMA,” IEEE Photonics Journal, vol. 9,
    pp. 1–9, Feb. 2017.
    [8] S. Yamaguchi, V. Mai, T. Cong Thang, and A. Pham, “Design and Performance Evaluation of VLC Indoor Positioning System using Optical Orthogonal Codes.” in Proc.
    IEEE 5th Int. Conf. Commun. Electron. (ICCE), Aug. 2014, pp. 54–59.
    [9] H. Haas, “High-speed Wireless Networking Using Visible Light,” SPIE Newsroom, Apr.
    2013.
    [10] L. Feng, R. Hu, J. Wang, P. Xu, and Y. Qian, “Applying VLC in 5G Networks: Architectures and Key Technologies,” IEEE Network, vol. 30, pp. 12–18, Nov. 2016.
    [11] S. Wu, H. Wang, and C.-H. Youn, “Visible Light Communications for 5G Wireless Networking Systems: From Fixed to Mobile Communications,” IEEE Network, vol. 28, pp.
    41–45, Nov. 2014.
    [12] H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. Tae Won,
    “100-Mb/s NRZ Visible Light Communications Using a Postequalized White LED,”
    IEEE Photonics Technology Letters, vol. 21, pp. 1063–1065, Sep. 2009.
    [13] B. Yu, H. Zhang, and H. Dong, “Optimized 481 Mb/s Visible Light Communication
    System Using Phosphorescent White LED,” Chinese Optics Letters, vol. 12, Nov. 2014.
    [14] Y. Wang, Y. Wang, and N. Chi, “Experimental Verification of Performance Improvement
    for a Gigabit Wavelength Division Multiplexing Visible Light Communication System
    Utilizing Asymmetrically Clipped Optical Orthogonal Frequency Division Multiplexing,” Photonics Research, vol. 2, Oct. 2014.
    [15] P. Manousiadis, H. Chun, S. Rajbhandari, R. Mulyawan, D. A Vithanage, G. Faulkner,
    D. Tsonev, J. McKendry, M. Ijaz, E. Xie, E. Gu, M. Dawson, H. Haas, G. Turnbull,
    I. Samuel, and D. O ’brien, “Emonstration of 2.3 Gb/s RGB White-light VLC Using
    Polymer Based Colour Converters and GaN Micro LEDs.” in Proc. IEEE Summer
    Topicals Meeting Ser., Jul. 2015, pp. 222–223.
    [16] T. Lang, Z. Li, F. Lu, Z. Dong, L. Wang, C. Li, F. Zhang, G. Chen, and A. Wang, “LEDBased Visible Light Communication and Positioning Technology and SoCs,” Oct. 2018,
    pp. 1–4.
    [17] Y. Tanaka, T. Komine, S. Haruyama, and M. Nakagawa, “Indoor Visible Light Data
    Transmission System Utilizing White LED Lights,” IEICE Transactions on Communications, vol. E86-B, pp. 2440–2454, Aug. 2003.
    [18] K. Fan, T. Komine, Y. Tanaka, and M. Nakagawa, “The Effect of Reflection on Indoor
    Visible-Light Communication System Utilizing White LEDs,” vol. 2. in Proc. 5th
    International Symposium on Wireless Personal Multimedia Communications, Nov. 2002,
    pp. 611–615.
    [19] X. Wang, P. Ho, and Y. Wu, “Robust Channel Estimation and ISI Cancellation for OFDM
    Systems with Suppressed Features,” IEEE Journal on Selected Areas in communications,
    vol. 23, no. 5, pp. 963–972, 2005.
    [20] H. Burchardt, N. Serafimovski, D. Tsonev, S. Videv, and H. Haas, “VLC: Beyond Pointto-Point Communication,” IEEE Communications Magazine, vol. 52, pp. 98–105, Jul.
    2014.
    [21] D. C. Daly and A. P. Chandrakasan, “An Energy Efficient OOK Transceiver for Wireless
    Sensor Networks,” IEEE Journal of Solid-State Circuits, vol. 42, pp. 1003–1011, May.
    2007.
    [22] J. Noh, S. Lee, J. Kim, M. Ju, and Y. Park, “A Dimming Controllable VPPM-based VLC
    System and Implementation,” Optics Communications, vol. 343, pp. 34–37, May. 2015.
    [23] S. D. Dissanayake, K. Panta, and J. Armstrong, “A Novel Technique to Simultaneously
    Transmit ACO-OFDM and DCO-OFDM in IM/DD Systems.” in Proc. IEEE GC Wkshps, Dec. 2011, pp. 782–786.
    [24] O. Kharraz and D. Forsyth, “Performance Comparisons Between PIN and APD Photodetectors for Use in Optical Communication Systems,” Optik - International Journal
    for Light and Electron Optics, vol. 124, pp. 1493–1498, Jul. 2013.
    [25] C. Wang, H.-Y. Yu, and Y.-J. Zhu, “A Long Distance Underwater Visible Light Communication System With Single Photon Avalanche Diode,” IEEE Photonics Journal, vol. 8,
    Oct. 2016.
    [26] Y. Rahmatallah and S. Mohan, “Peak-To-Average Power Ratio Reduction in OFDM
    Systems: A Survey And Taxonomy,” IEEE Communications Surveys Tutorials, vol. 15,
    pp. 1567–1592, Jan. 2013.
    [27] T. Jiang and Y. Wu, “An Overview: Peak-to-Average Power Ratio Reduction Techniques
    for OFDM Signals,” IEEE Transactions on Broadcasting, vol. 54, pp. 257–268, Jul.
    2008.
    [28] Y. H. Hu, “CORDIC-based VLSI architectures for digital signal processing,” Signal
    Processing Magazine, IEEE, vol. 9, pp. 16–35, Aug 1992.
    [29] “XM12 High Performance Chassis,” Dec. 2012. [Online]. Available: http:
    //www.leadertech.com.tw/product/chassis/xm12.php

    QR CODE