研究生: |
葉澤宏 |
---|---|
論文名稱: |
以化學氣相沉積法成長選區跨接碳管之研究 |
指導教授: | 戴念華 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 92 |
中文關鍵詞: | 單壁奈米碳管 、鋁鐵鉬 、跨接 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在實驗中改變鋁鐵鉬催化劑鍍膜順序及分層結構,發現單壁奈米碳管之成長會因不同鍍膜程序而有所差異,由此本研究探討鋁鐵鉬催化劑系統在成長碳管過程中所呈現的狀態對其成長的影響並探討其機制。此外,也將鋁鐵鉬催化劑系統鍍於不同的基板上(氧化鋁、氧化鎂及氮化鋁),比較不同基板上所成長出來的碳管之差異性,可以更了解不同的基板能否適用於鋁鐵鉬催化劑系統。
研究中包括了用鋁鐵鉬催化劑來成長跨接碳管,並使用覆蓋阻絕層來作選區定位以成長跨接碳管,控制了碳管生長位置並使碳管具側向成長,使試片上存在著跨接碳管。藉由本實驗之設計,吾人發現阻絕層與催化劑應有的適當比例調配,方能成長出跨接碳管。
Abstract
In this work, the influences of sequence of the deposited thin films (Al, Fe and Mo), which were coated onto SiO2/Si substrates for forming multi-layer catalyst system, on the growth of single-walled carbon nanotubes (SWNTs) were studied. Experimental results showed that different morphologies and number of SWNTs were obtained when different catalyst systems were adopted. The feasible mechanism of the Al-Fe-Mo catalyst system for growing SWNTs wsa discussed. Besides, Al-Fe-Mo catalyst system was also deposited on different substrates (sapphire, MgO and AlN), and difference of the synthesized CNTs on these substrates was discussed. The result shows that Al-Fe-Mo catalyst system was suitable for sapphire and MgO substrates for grown SWNTs.
Growth of the bridging SWNTs using Al-Fe-Mo catalyst system is also studied. In this study, the bridging SWNTs were synthesized successfully by covering insulated layer (MgO) on catalyst. By controlling the growth of SWNTs grown in the lateral direction, bridging SWNTs connecting catalyst pads were made. This work also found that a proper ratio of insulated layer to catalyst layer is required for obtaining bridging SWNTs.
1. S. Iijima, “Helical microtubules of graphitic carbon”, Nature, 354, 56, (1991).
2. Rice University: Rick Smalley’s Group Home Page Image Gallery.
3. J. H. Schon, Ch. Kloc, and B. Batlogg, High Temperature Super conductivity in Lattice-Expanded C60, Science 293, 2432 (2001).
4. M. S. Dresseelhaus, G. Dresseelhaus, and R. Saito, “Physics of carbon nanotubes”, Carbon, 33, 883 (1995).
5. Carbon Nanotubes and Related Structures-new materials for the twenty-first century, Peter J. F. Harris, Department of Chemisty,University of Reading.
6. Y. Saito, S. Uemura, “Field emission from carbon nanotubes and its application to electron sources”, Carbon, 38, 169, (1999).
7. T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, R. E. Smalley, “Catalytic growth of single-walled nanotubes by laser vaporization”, Chem. Phys. Lett. 243, 49 (1995).
8. A. C. Dillon, P. A. Parilla, J. L. Alleman, J. D. Perkins, M. J. Heben, “Controlling single-wall nanotube diameters with variation in laser pulse power”, Chem. Phys. Lett., 316, 13 (2000).
9. H. M. Cheng, F. Li, G. Su, H. Y. Pan, L. L. He, X. Sun and M. S. Dresselhaus, “Large-scale and low-cost synthesis of single walled carbon nanotubes”, Appl. Phys. Lett., 72, 3282 (1998).
10. Z. P. Huang, J. W. Xu, Z. F. Ren, J. H. Wang, M. P. Siegal and P. N. Provencio, “Growth of highly oriented carbon nanotubes by plasma-enhanced hot filament chemical vapor deposition”, Appl. Phys. Lett., 73, 3845 (1998).
11. C. Bower, W. Zhu, S. Jin and O. Zhou, “Plasma-induced alignment of carbon n.anotubes”, Appl. Phys. Lett., 77, 830 (2000).
12. M. Okai, T. Muneyoshi, T. Yaguchi, and S. Sasaki, “Structure of carbon nanotubes grown by microwave-plasma-enhanced chemical vapor deposition”, Appl. Phys. Lett., 77, 3468 (2000).
13. A. G. Rinzler, J. H. Hafner, P. Nikolaev, L. Lou, S. G. Kim, D. Tomanek, P. Nordlander, D. T. Colbert, and R. E. Smalley, “Unraveling nanotubes: field emission from an atomic wire”, Science, 269, 1550 (1995).
14. W. A. de Heer, A. Chatelain, and D. Ugarte, “A carbon nanotube field-emission electron source”, Science, 270, 1179 (1995).
15. G. Che, B. B. Lakshmi, E. R. Fisher and C. R. Martin, “Carbon nanotubule membranes for electrochemical energy storage and production”, Nature,393, 346 (1998).
16. B. Gao, A. Kleinhammes, X.P. Tang, C. Bower, L. Fleming, Y. Wu, O. Zhou, “Electrochemical intercalation of single-walled carbon nanotubes with lithium”, Chem. Phys. Lett., 307, 153 (1999).
17. H. Shimoda, B. Gao, X. P. Tang, A. Kleinhammes, L. Fleming, Y. Wu and O. Zhou, “Lithium intercalation into etched single-wall carbon nanotubes”, Physica B, 323, 133 (2002).
18. A. C.Dillon, K.M. Jones, T. A.Bekkedahl, C. H.Kiang, D. S. Bethune, and M. J. Heben, ‘Storage of hydrogen in single-walled carbon nanotubes”, Nature, 386, 377(1997).
19. S. Mi Lee and Y. Hee Lee, “Hydrogen storage in single walled carbon nanotubes”, Appl. Phys. Lett., 76 (20), 2877 (2000).
20. Y. Chen, D. T. Shaw, X. D. Bai, E. G. Wang, C. Lund, W. M. Lu , “Hydrogen storage in aligned carbon nanotubes”, Appl. Phys. Lett.,78 ,2128 (2001).
21. W. Qikun, Z. Changchun, L. Weihua, “Hydrogen storage by carbon nanotube and their films under ambient pressure”, nInternational Journal of Hydrogen Energy, 27, 497 (2002).
22. S. J. Tans, Alwin R. M. Verschueren and C. Dekker, “Room-temperature transistor based on a single carbon nanotube”, Nature, 393, 49 (1998).
23. R. Martel, T. Schmidt, H. R. Shea, T. Hertel, and Ph. Avouris, “Single and multi-wall carbon nanotube field-effect transistors”, Appl. Phys. Lett.,73 (17), 2447 (1998).
24. P. Avouris, T. Hertel, R. Martel, T. Schmidt, H. R. Shea, R. E. Walkup, “Carbon nanotubes: nanomechanics, manipulation, and electronic devices”, Appl. Sur. Sci., 141, 201 (1999).
25. M. Ahlskog, R. Tarkiainen, L. Roschier, and P. Hakonen, “Single-electron transistor made of two crossing multiwalled carbon nanotubes and its noise properties”, Appl. Phys. Lett., 77 (24), 4037 (2000).
26. B. I. Yakobson and R. E. Smalley, “Fullerene nanotubes and beyond”, American Scientist, 85, 324 (1997).
27. P. Calvert, “Strength in disunity”, Nature, 357, 356 (1992).
28. L. Jin, C. Bower, and O.Zhou, “Alignment of carbon nanotubes in a polymer matrix by mechanical stretching”, Appl. Phys. Lett., 73, 1197 (1998).
29. David A. Britz, Andrei N. Khlobystov, Kyriakos Porfyrakis, Arzhang Ardavan, G. Andrew D. Briggs, “Chemical reactions inside single-walled carbon nano test-tubes”, Chem. Commun., 1, 37 (2005).
30. J. Wei, H. Zhu, D. Wu, B. Weib, “Carbon nanotube filaments in household light bulbs”, Appl. Phys. Lett., 84, 4869 (2003).
31. H. Kanzow, A. Ding, “Formation mechanism of single-wall carbon nanotubes on liquid-metal particles”, Phys. Rev. B, 60, 11180 (1999).
32. A. Gorbunov, O. Jost, W. Pompe, A. Graff, “Solid–liquid–solid growth mechanism of single-wall carbon Nanotubes”, Carbon, 40, 113 (2002).
33. J. W. Ward, B.Q. Wei, P.M. Ajayan, “Substrate effects on the growth of carbon nanotubes by thermal decomposition of methane”, Chem. Phys. Lett. 376, 717 (2003).
34. A. C. Wright, Y. Xiong, N. Maung, S.J. Eichhornb, R.J. Young, “The influence of the substrate on the growth of carbon nanotubes from nickel clusters—an investigation using STM, FE-SEM, TEM and Raman spectroscopy“, Materials Science and Engineering C, 23, 279 (2003).
35. H. Hongo, M. Yudasaka, T. Ichihashi, F. Nishey, S. Iijima, “Chemical vapor deposition of single-wall carbon nanotubes on iron-film-coated sapphire substrates”, Chemical Physics Letters 361, 349-354 (2002).
36. Hiroki Ago, Kazuhiro Nakamura, Ken-ichi Ikeda, Naoyasu Uehara, Naoki Ishigami, Masaharu Tsuji, “Aligned growth of isolated single-walled carbon nanotubes programmed by atomic arrangement of substrate surface”, Chem. Phys. Lett. 408, 433-438 (2005).
37. H. T. Ng, B. Chen, J. E. Koehne, A. M. Cassell, J. Li, J. Han, M. Meyyappan, “Growth of Carbon Nanotubes: A Combinatorial Method To Study the Effects of Catalysts and Underlayers”, J. Phys. Chem. B 107, 8484 (2003).
38. T. de los Arcos, M. G. Garnier, J. W. Seo, P. Oelhafen, V. Thommen, D. Mathys, “The Influence of Catalyst Chemical State and Morphology on Carbon Nanotube Growth ”, J. Phys. Chem. B, 108, 7728 (2004).
39. T. de los Arcos , M. G. Garnier , P. Oelhafen, D. Mathys, J. W. Seo, C. Domingo , “Strong influence of buffer layer type on carbon nanotube characteristics”, Carbon, 42, 187 (2004).
40. L. Delzent, B. Chen, A. Cassell, R. Stevens, C. Nguyen, M. Meyyappan, “Multilayered metal catalysts for controlling the density of single-walled carbon nanotube growth ”, Chem. Phys. Lett. 348, 368 (2001).
41. R. Seidel, G. S. Duesberg, E. Unger, A. P. Graham, M. Liebau, F. Kreupl, “Chemical Vapor Deposition Growth of Single-Walled Carbon Nanotubes at 600 ℃ and a Simple Growth Model”, J. Phys. Chem. B 108, 1888 (2004).
42. R. Y. Zhang, I. Amlani, J. Baker, J. Tresek, R. K. Tsui, Chemical Vapor Deposition of Single-Walled Carbon Nanotubes Using Ultrathin Ni/Al Film as Catalyst, Nano Lett. 3, 731 (2003).
43. R. G. Lacerda, A. S. Teh, M. H. Yang, K. B. K. Teo, N. L. Rupesinghe, S. H. Dalal, “Growth of high-quality single-wall carbon nanotubes without amorphous carbon formation”, Appl. Phys. Lett. 84, 269 (2004).
44. R. Seidel, M. Liebau, G. S. Duesberg, F. Kreupl, E. Unger, A. P. Graham, “In-Situ Contacted Single-Walled Carbon Nanotubes and Contact Improvement by Electroless Deposition”, Nano Lett. 3, 965 (2003).
45. A. M. Cassell, J. A. Raymakers, J. Kong, H. Dai, “Large Scale CVD Synthesis of Single-Walled Carbon Nanotubes”, J. Phys. Chem. B, 103, 6484 (1999).
46. J. E. Herrera, L. Balzano, A. Borgna, W. E. Alvarez, D. E. Resasco, “Relationship between the Structure/Composition of Co–Mo Catalysts and Their Ability to Produce Single-Walled Carbon Nanotubes by CO Disproportionation”, J. Catalysis, 204, 129 (2001).
47. Y. J. Yoona, J. C. Baea, H. K. Baika, S. J. Chob, S. J. Leec, K. M. Song, “Nucleation and growth control of carbon nanotubes in CVD process”, Phys. B, 323, 318 (2002).
48. H. Cui, G. Eres, J.Y. Howe, A. Puretkzy, M. Varela, D.B. Geohegan, D.H. Lowndes, “Growth behavior of carbon nanotubes on multilayered metal catalyst film in chemical vapor deposition”, Chem. Phys. Lett. 374, 222 (2003).
49. S. Tang, Z. Zhong, Z. Xiong, L. Sun, L. Liu, J. Lin, “Controlled growth of single-walled carbon nanotubes by catalytic decomposition of CH4 over Mo/Co/MgO catalysts ”, Chem. Phys. Lett. 350, 19 (2001).
50. Nathan R. Franklin, Qian Wang, Thomas W. Tombler, Ali Javey, Moonsub Shim, and Hongjie Dai, “Integration of suspended carbon nanotube arrays into electronic devices and electromechanical systems”, Appl. Phys. Lett. 81, 913 (2002).
51. Daisuke Takagi, Yoshikazu Hommaa, Yoshihiro Kobayashi, “Selective growth of individual single-walled carbon nanotubes suspended between pillar structures”, Physica E 24 (2004) 1-5
52. Young-Soo Han, Jin-Koog Shin, and Sung-Tae Kim, “Synthesis of carbon nanotube bridges on patterned silicon wafers by selective lateral growth”, JOURNAL OF APPLIED PHYSICS 90, 11 (2001).
53. 陳嘉勻「在基板上成長單壁奈米碳管及其催化劑作用的研究」,國立清華大學材料科學工程研究所碩士論文〞中華民國九十四年六月
54. Yoshikazu Homma, Satoru Suzuki, Yoshihiro Kobayashi, and Masao Nagase, “Mechanism of bright selective imaging of single-walled carbon nanotubes on insulators by scanning electron microscopy”, Appl. Phys. Lett. 84, 1750 (2004).