研究生: |
鍾雅琳 Chung, Ya Lin |
---|---|
論文名稱: |
考量派工法則與批量流於半導體封裝廠之生產排程問題 Combine dispatching rule with lot streaming to solve scheduling problem for semiconductor back-end factory |
指導教授: |
林則孟
Lin, James.T |
口試委員: |
丁慶榮
廖崇碩 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工業工程與工程管理學系 Department of Industrial Engineering and Engineering Management |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 111 |
中文關鍵詞: | 派工法則 、批量流 、基因演算法 、混合流程行生產排程問題 、EGOCBA |
外文關鍵詞: | Dispatching Rule, Lot streaming, Genetic algorithm, EGOCBA, Hybrid flow shop scheduling problem |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以半導體封裝廠為例,探討混合流線型生產環境的批量流與派工法則之排程問題。在已經訂單資訊情況下,考慮各站中不同機群之非等效平行機台與相同機群內完全相同平行機台;各訂單之產品依照規格不同有其適用之機台群限制;各機台加工時間具有隨機現象;加工過程中有其載具轉換所造成之特殊生產特性:黏晶粒站加工之拆批行為決策、模壓站前之集批特性,以最小化訂單之平均流程時間(F ̅)為目標,求得最合適之規劃決策。
本研究面臨之規劃問題主要為三大部分:一為工作站之派工法則選定、二為訂單拆批決策、三為訂單機群指派。由於產業特殊之生產環境問題,且加工時間具有隨機性情況下,其指派問題相當困難且複雜,因此本研究運用模擬最佳化手法進行問題求解,利用基因演算法進行解空間之搜尋與改良法最佳運算資源分配(EGOCBA, Elite Group Optimal Computing Budget Allocation)有效地分配模擬資源以節省模擬時間,求得在同時考量派工法則與批量流之生產情況更能有效降低平流程時間且將方案結果提供給半導體封裝業參考。
This study is a case for Semiconductor Assembly Factory and consider hybrid flow shop problem for lot streaming and dispatching rule. Consider orders with a known arrival time, unrelated parallel machines for machine group, identical parallel machines within machine group, machine eligibility about different product, the processing time with randomness, specific production about lot streaming and batch processor to a scheduling problem. The objective function is to minimize mean flow time of the orders in the study.
The problem is to determine the dispatching rule of each stage, the lot size of each job after the first stage, and the assignment machine group of each job to process in each stage. Because of specific production environment, the assignment problem is completive. To address this problem, we develop the simulation optimization approach. To overcome too many alternatives to exhaust, genetic algorithm is used when the search space is large. Elite Group Optimal computing budget allocation(EGOCBA) is used to reduce simulation budget and time while processing time of machines has randomness. The conclusion of this study presents the superior mean flow time in the problem of dispatching rule with lot streaming.
[1] 林則孟,系統模擬-理論與應用,滄海書局,2001
[2] 林則孟、邱俊智、陳宏銘,”粒子群演算法結合模擬於隨機性緩衝區容量分配問題”,2014中國工業工程學會學術研討會,台灣,2014
[3] 方信櫻,”半導體封裝廠之短期訂單與機台指派問題”,國立清華大學工業工程與工程管理學系,碩士論文,2013
[4] 黃謙研,”考慮批量流和集批加工之混合流程型生產排程問題-以半導體封裝廠為例”, 國立清華大學工業工程與工程管理學系,碩士論文,2014
[5] Azzi, Anna, Faccio, Maurizio, Persona, Alessandro and Sgarbossa, Fabio, Lot splitting scheduling procedure for makespan reduction and machine capacity increase in a hybrid flow shop with batch production, International Journal of Advanced Manufacturing Technology 59, pp 775-786, 2012
[6] Chen, CH. and Lee, LH., Stochastic Simulation Optimization: An Optimal Computing Budget Allocation, 2010.
[7] Defersha, Fantahun M., A comprehensive mathematical model for hybrid flexible flowshop lot streaming problem, International Journal of Industrial Engineering Computations, vol.2, pp. 283–294, 2011
[8] El-Bouri, Ahmed, Balakrishnan, Subramaniam and Popplewell, Neil, Cooperative dispatching for minimizing mean flowtime in a dynamic flowshop, International Journal of Production Economics, vol.113, pp. 819-833, 2008
[9] Feldmann, M. and Biskup, D., Lot streaming in a multiple product permutation flow shop with intermingling, International Journal of Production Research, vol.46, No. 1, pp. 197–216, 2008
[10] Garey, M.R. and Johnson, D.S., Computers and intractability: a guide to the theory of NP-completeness, 1979.
[11] Gupta, JND, Hariri, A.M.A. and Potts, C.N., Scheduling a two-stage hybrid flow shop with parallel machines at the first stage, Annals of Operations Research ,vol.69, pp.171-191, 1997
[12] Haupt R., A Survey of Priority Rule-Based Scheduling, OR Spektrum 11:3--16, 1989
[13] Henderson, Shane G. and Nelson, Barry L., Handbooks in Operations Research and Management Science: Simulation, Vol.13, Pages 1-678, 2006
[14] Holland, J. H., Adaptation in Natural and Artificial Systems, Cambridge, MA, First edition, 1975
[15] Hunsucker J.L. and Shah, J.R., Comparative performance analysis of priority rules in a constrained flow shop with multiple processors environment, European Journal of Operational Research ,vol.72, pp. 102-114, 1994
[16] Lin, James T., Chena, Chien-Ming, Chiua, Chun-Chih, Fanga, Hsin-Ying, Simulation optimization with PSO and OCBA for semiconductor back-end assembly, Journal of Industrial and Production Engineering, vol. 30, pp. 452–460, 2013
[17] Lin, James T., Chen, Chien-Ming, Simulation optimization approach for hybrid flow shop scheduling problem in semiconductor back-end manufacturing, Simulation Modelling Practice and Theory, vol. 55, pp. 100-114, 2015
[18] Lin, James T., Huang, Chao-Jung, A simulation-based optimization approach for a semiconductor photobay with automated material handling system, Simulation Modelling Practice and Theory, vol. 46, pp. 76-100, 2014
[19] Liu, C.Y., Chang, S.C., Scheduling flexible flow shops with sequence-dependent setup effects, IEEE Trans Robotics Automation, vol.16, 2000
[20] Mortezaei, Navid and Zulkifli, Norzima, Integration of Lot Sizing and Flow Shop Scheduling with Lot Streaming, Journal of Applied Mathematics ,vol.2013, 2013
[21] Pan, Quan-Ke, Tasgetiren, M. Fatih, Suganthan, P.N. and Chua, T.J., A discrete artificial bee colony algorithm for the lot-streaming flow shop scheduling problem, Information Sciences , vol.181, pp. 2455–2468, 2011
[22] Ribas, I, Leisten, R. and Framin ̃an, JM., Review and classification of hybrid flow shop scheduling problems from a production system and a solutions procedure perspective, Computers & Operations Research, vol.37, pp. 1439–1454, 2010
[23] Ruiz, Rubén and Vázquez-Rodríguez, José Antonio, The hybrid flow shop scheduling problem, European Journal of Operational Research, vol.205, pp. 1–18, 2010
[24] Santos, DL, Hunsucker, JL. and Deal, DE., Global lower bounds for flow shops with multiple processors, European Journal of Operational Research, Vol 80, pp.112–120, 1995
[25] Sarper, H. and Henry, MC., Combinatorial Dispatching Rules in A Two-machine Flow Evaluation of Six Dynamic Shop, Omega, Vol. 24, No. 1, pp. 73-81, 1996
[26] Uetake, T.H., Tsubone H. and Ohba M., A production scheduling system in a hybrid flow shop, International Journal of Production Economics, vol.41, pp. 395-398, 1995
[27] Vallada, Eva and Ruiz, Ruben, A genetic algorithm for the unrelated parallel machine scheduling problem with sequence dependent setup times. European Journal of Operational Research ,vol.211, pp. 612–622, 2011
[28] Wang, I-Lin, Yang, Taho and Chang, Yu-Bang, Scheduling two-stage hybrid flow shops with parallel batch, release time, and machine eligibility constraints, Journal of Intelligent Manufacturing, vol.23, pp. 2271–2280, 2012
[29] Yang, Taho, Kuo, Yiyo and Cho, Chiwoon, A genetic algorithms simulation approach for the multi-attribute combinatorial dispatching decision problem, European Journal of Operational Research , vol.176, pp. 1859–1873, 2007
[30] Zhang, Si, Chen, Pan, Lee, Loo Hay, Peng, Chew Ek and Chen, Chun-Hung, Simulation Optimization Using the Particle Swarm Optimization with Optimal Computing Budget Allocation. Proceedings of the Winter Simulation Conference, 2011.
[31] Zhang, Wei, Yin, Changyu, Liu, Jiyin and Linn, Richard J., Multi-job lot streaming to minimize the mean completion time in m-1 hybrid flowshops, International Journal of Production Economics, vol.96, pp. 189–200, 2005