簡易檢索 / 詳目顯示

研究生: 畢法瑞
論文名稱: Static and Dynamic Magnetic Behaviors in NiFe/IrMn (Ferromagnet/Antiferromagnet) Thin Film Bilayers
鎳鐵/銥錳(鐵磁/反鐵磁)雙層薄膜中的靜態和動態磁性行為研究
指導教授: 李尚凡
Lee, Shang-Fan
李志浩
Lee, Chih-Hao
口試委員: 姚永德
Yao-Young Der
牟中瑜
Chung-Yu Mou
陳恭
Gung Chern
洪東興
Dung-Shing Hung
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 289
中文關鍵詞: 鐵磁共振自旋電子學磁化動力學
外文關鍵詞: Dynamic Magnetization
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • Exchange bias is the manifestation of the exchange anisotropy of a ferromagnetic material when it is in contact with an antiferromagnetic one. This effect was first discovered by Meiklejohn and Bean in partially oxidized Co particles more than 50 years ago, then also verified in FM/AFM bilayers. Other concomitant effects to the exchange bias have been observed, such as an increase in the coercivity, a shift in the ferromagnetic resonance frequency, the training effect, and asymmetric magnetization reversal.
    Since its discovery, exchange bias stands as one of the most interesting topics that has received much attention due to its intriguing physical origin, widespread applications in spintronics, and potential applications in high frequency devices based on magnetic thin films. Regarding high frequency applications, exchange bias is very effective in tailoring the ferromagnetic resonance frequency to a higher range through adding an additional unidirectional anisotropy.
    From applications point of view, most of the devices based on EB, such as magnetoresistive sensors and magnetic random access memory devices are in thin film form. Consequently, FM/AFM bilayers have received more attention during the past decades. Recently, the thermal stability of exchange bias systems gained more attention due to its importance for the real applications. Most of the researches in this field were focused on studying the thermal stabilities of the static parameters for the exchange bias bilayers at or above the room temperature. Given the current trend toward decreasing the devices’ response time to increase their speeds, more understanding for the dynamical parameters and their thermal stability has become very necessary. However, the dynamic parameters still lack for a comprehensive study especially at low temperatures. Among the dynamic parameters that need more interests, is the rotatable anisotropy whish was found to have a considerable effect on the ferromagnetic resonance frequency.
    In our research, a systematic experimental study on the exchange bias effect in ferromagnetic/antiferromagnetic bilayer system is performed both in the static (dc) and dynamic (high frequency) timescale to clarify the effects of temperature and antiferromagnetic layer thickness on the system’s stability and magnetic properties. Our system consists of NiFe/IrMn bilayers. First, the static behavior was studied confirming a low temperature exchange bias onset occurred at very low antiferromagnetic thickness that was increased to higher onset thickness at higher temperatures. Both parallel and perpendicular domain walls are suggested to explain the static exchange bias and coercivity behaviors. In the microwave region, peaks, which can only be suppressed at high temperatures with strong external field, were observed in the antiferromagnetic thickness dependence of the dynamic effective field and resonance frequency. The temperature dependence of both static and dynamic parameters suggests different values of the Néel temperature. The dynamic results show a rotatable anisotropy contribution, which has a peak value at the blocking temperature and vanishes at the dynamic Néel temperature. From the temperature dependence of the resonance field, a slight exponential decrease of the gyromagnetic ratio with 1/T was found.

    Abstract I Dedication IV Acknowledgment V Content VII List of Figures XI List of Tables XXV 1: Review of Magnetism 1 1.1 Introduction 1 1.2 Magnetism in materials 3 1.2.1 Historical background 3 1.2.2 Origin of magnetism 4 1.2.3 Maxwell’s equations 5 1.2.4 Magnetization in Maxwell’s equations 8 1.2.5 Types of magnetism 9 1.3 Magnetic anisotropy 17 1.3.1 Magnetocrystalline anisotropy 17 1.3.2 Shape anisotropy 19 1.3.3 Exchange anisotropy 21 1.4 Magnetization dynamics 22 1.4.1 Equation of motion-magnetization precession 22 1.4.2 Landau-Lifshitz equation 25 1.4.3 Landau-Lifshitz-Gilbert equation 26 1.4.4 Correlation of Landau-Lifshitz and Landau-Lifshitz-Gilbert equations 27 1.5 Motivations 29 2: Exchange Bias Field - An Overview 31 2.1 Introduction 31 2.2 Exchange bias overview 31 2.3 Parameters of exchange bias system 36 2.4 Concomitant effects of the exchange bias 38 2.4.1 Coercivity enhancement 38 2.4.2 Training effect 40 2.4.3 Asymmetrical hysteresis loop 41 2.4.4 Magnetization offset 42 2.4.5 Memory effect 43 2.4.6 Positive exchange bias 43 2.4.7 Enhanced ferromagnetic resonance frequency 47 2.5 Materials for the exchange bias system 48 2.5.1 Small particles 49 2.5.2 Inhomogeneous materials 49 2.5.3 Coated AFM single crystal 50 2.5.4 Thin films 50 2.6 Characterization of the exchange bias system 52 2.6.1 Ferromagnetic resonance study 53 2.7 Time Considerations in exchange bias system 57 3: Modeling of Exchange Bias Systems 61 3.1 Introduction 61 3.2 Stoner-Wohlfarth model 61 3.3 Ideal Description of exchange bias phenomena 65 3.4 Exchange bias models 71 3.4.1 Macroscopic models 72 3.4.2 Mesoscopic models 90 3.4.3 Microscopic models 98 3.4.4 Mesoscopic/microscopic models 102 4: Experimental Methods 104 4.1 Introduction 104 4.2 Sputtering deposition 104 4.2.1 Our sputtering system 108 4.3 Vibrating sample magnetometer 111 4.3.1 Our vibrating sample magnetometer 113 4.4 Post annealing 115 4.5 Superconducting quantum interference devices 117 4.5.1 Our SQUID magnetometer 118 4.6 Vector network analyzer ferromagnetic resonance (spin dynamics) 120 4.6.1 Vector network analyzer 121 4.7 Low pass filter circuit design 127 4.8 Low pass filter circuit fabrication 130 4.9 Network analyzer-low pass filter assembly 134 5: Results and Discussion I - Static Parameters Study 136 5.1 Introduction 136 5.2 Samples structure 136 5.3 Determining the annealing direction 138 5.4 Training Effect 141 5.5 Surface roughness study 145 5.6 Static properties measurements by SQUID 150 6: Results and Discussion II - Dynamic Parameters Study 178 6.1 Introduction 178 6.2 Dynamic properties FMR-measurements 178 6.3 Accessing the rotatable anisotropy 179 6.4 FMR results for free FM layer sample 181 6.5 Effective dynamic magnetic anisotropy 186 6.6 Dynamic behavior of the biased samples 190 7: Conclusions and Future Work 214 7.1 Conclusions 214 7.2 Future works 219 References 220 Appendix (A): Results and Discussion III - Inverted Magnetization Loop 261 Appendix (B): Spin Pumping and Spin Backflow into Topological Insulators 273 Publication List 289

    References
    Chapter 1:
    [1] H. W. Lee, K. C. Kim and J. Lee: Review of maglev train technologies. IEEE Trans. Magn. 42, 1917 (2006).
    [2] N. A. Frey and S. Sun: Magnetic Nanoparticle for Information Storage Applications. Book chapter in: Inorganic Nanoparticles - Synthesis, Applications & Perspectives. Edited by C. Altavilla and E. Ciliberto. pp 33–68 (2010).
    [3] M. H. Clark: Making magnetic recording commercial 1920-1955 (Invited paper). J. Magn. Magn. Mater. 193, 8 (1999).
    [4] D. E. Speliotis: Magnetic recording beyond the first 100 years (Invited paper). J. Magn. Magn. Mater. 193, 29 (1999).
    [5] D. Weller and A. Moser: Thermal Effect Limits in Ultrahigh Density Magnetic Recording. IEEE Trans. Magn. 35, 4423 (1999).
    [6]. C. Reig, M. D. C. Beltran and D. R. Munoz: Magnetic Field Sensors Based on Giant Magnetoresistance (GMR) Technology - Applications in Electrical Current Sensing. Sensors 9, 7919 (2009).
    [7] R. Coehoorn, In: K. H. J. Buschow (Ed.), Handbook of Magnetic Materials, Vol. 15, North-Holland, Amterdam, (2003).
    [8] R. Coehoorn, J. T. Kohlhepp, R. M. Jungblut, A. Reinders and M. J. Dekker. Mesoscopic magnetism and the phenomenon of exchange anisotropy - MBE grown Cu(110)/Ni80Fe20/Fe50Mn50 bilayers with corrugated interfaces. Physica B 319, 141 (2002).
    [9] C. G. Stefanita: Magnetism-Basics and Applications. Springer-Verlag Berlin Heidelberg (2012).
    [10] D. J. Griffiths: Introduction to Quantum Mechanics. Prentice Hall, New Jersey, (1995).
    [11] C. Kittel: Introduction to Solid State Physics, 8th ed. (JohnWiley & Sons, New York, NY, 2005).
    [12] D. D. Stancil and A. Prabhakar: Spin Waves-Theory and Applications. Springer Science and Business Media, LLC (2009).
    [13] K. Honda and S. Kaya: On the Magnetization of Single Crystals of Iron. Sci. Rep. Tohoku Univ. 15, 721 (1926).
    [14] S. Kaya: On the Magnetisation of Single Crystals of Nickel. Sci. Rep. Tohoku Univ. 17, 639 (1928).
    [15] W. O'Reilly: Rock and mineral magnetism. Glasgow – Blackie, New York - Distributed in the USA by Chapman and Hall (1984).
    [16] M. T. Johnson, P. J. H. Bloemen, F. J. A. den Broeder and J. J. de Vries: Magnetic anisotropy in metallic multilayers. Rep. Prog. Phys. 59, 1409 (1996).
    [17] W. H. Meiklejohn and C. P. Bean: New Magnetic Anisotropy. Phys. Rev. 102, 1413 (1956).
    [18] W. H. Meiklejohn and C.P. Bean: New Magnetic Anisotropy. Phys. Rev. 105, 904 (1957).
    [19] L. D. Landau and E.M. Lifshitz: Theory of the dispersion of magnetic permeability in ferromagnetic bodies. Phys. Z. Sowietunion 8, 153 (1935).
    [20] E. Lifshitz: On the magnetic structure of iron. J. Phys. USSR 8, 337 (1944).
    [21] T. L. Gilbert: A Lagrangian formulation of the gyromagnetic equation of the magnetic field. Physical Review 100, 1243 (1955). This is only an abstract; the full report is: Armor Research Foundation Project No. A059, Supplementary Report, May 1, 1956, but was never published. A description of the work is given in: T. L. Gilbert: A phenomenological theory of damping in ferromagnetic materials. IEEE Trans. Mag. 40, 3443 (2004).
    [22] S. Chikazumi: Physics of Ferromagnetism. 2nd ed. Clarendon Press, Oxford, (1997).
    [23] W. F. Brown Jr: Micromagnetics. Interscience Publishers, New York (1963).
    [24] P. P. Guidugli: On dissipation mechanisms in micromagnetics. Euro. Phys. J. B 19, 417 (2001).
    [25] J. C. Mallinson: On damped gyromagnetic precession. IEEE Trans. Magn. 23, 2003 (1987).
    [26] R. Kikuchi: On the Minimum of Magnetization Reversal Time. J Appl. Phys. 27, 1352 (1956).

    Chapter 2:
    [1] W. H. Meiklejohn and C. P. Bean: New Magnetic Anisotropy. Phys. Rev. 102, 1413 (1956).
    [2] W. H. Meiklejohn and C. P. Bean: New Magnetic Anisotropy. Phys. Rev. 105, 904 (1957).
    [3] J. Nogues and I. K. Schuller: Exchange bias. J. Magn. Magn. Mater. 192, 203 (1999).
    [4] M. Kiwi: Exchange Bias Theory. J. Mag. Mag. Mater. 234, 584 (2001).
    [5] M. D. Stiles and R. D. McMichael: Coercivity in Exchange-Bias Bilayers. Phys. Rev. B 63, 064405 (2001).
    [6] R. D. McMichael, M. D. Stiles, P. J. Chen and W.F. Egelhoff: Ferromagnetic resonance studies of NiO-coupled thin films of Ni80Fe20. Phys. Rev. B 58, 8605 (1998).
    [7] M. Rubinstein, P. Lubitz and S. F. Cheng: Ferromagnetic-resonance field shift in an exchange-biased CoO/Ni80Fe20 bilayer. J. Magn. Magn. Mater. 195, 299 (1999).
    [8] J. G. Hu, G. J. Jin and Y. Q. Ma: Ferromagnetic resonance and exchange anisotropy in ferromagnetic/antiferromagnetic bilayers. J. Appl. Phys. 91, 2180 (2002).
    [9] P. Lubitz, J. J. Krebs, M. M. Miller and S. F. Cheng: Temperature dependence of ferromagnetic resonance as induced by NiO pinning layers. J. Appl. Phys. 83, 6819 (1998).
    [10] W. H. Meiklejohn: Exchange Anisotropy - A Review. J. Appl. Phys. 33, 1328 (1962).
    [11] J. Nogues, J. Sort, V. Langlais, V. Skumryev, S. Surinach, J. S. Munoz and M. D. Baro: Exchange bias in nanostructures. Phys. Rep. 422, 65 (2005).
    [12] P. Y. Yang, C. Song, B. Fan, F. Zeng and F. Pan: The role of rotatable anisotropy in the asymmetric magnetization reversal of exchange biased NiO/Ni bilayers. J. Appl. Phys. 106, 013902 (2009).
    [13] R. L. Stamps: Mechanisms for exchange bias. J. Phys. D: Appl. Phys. 33, R247 (2000).
    [14] B. Dieny, V. S. Speriosu, S. S. P. Parkin, B. A. Gurney, D. R. Wilhoit and D. Mauri: Giant magnetoresistive in soft ferromagnetic multilayers. Phys. Rev. B 43, 1297 (1991).
    [15] C. Chappert, A. Fert and F. Nguyen Van Dau: The emergence of spin electronics in data storage. Nature Mater. 6, 813 (2007).
    [16] C. Y. You, H. S. Goripati, T. Furubayashi, Y. K. Takahashi and K. Hono: Exchange bias of spin valve structure with a top-pinned Co40Fe40B20/IrMn . Appl. Phys. Lett. 93, 012501 (2008).
    [17] W. Stoecklein, S. S. P. Parkin and J. C. Scott: Ferromagnetic resonance studies of exchange-biased permalloy thin films. Phys. Rev. B 38, 6847 (1988).
    [18] B. K. Kuanr, R. E. Camley and Z. Celinski: Exchange bias of NiO/NiFe: Linewidth broadening and anomalous spin-wave damping. J. Appl. Phys. 93, 7723 (2003).
    [19] S. Queste, S. Dubourg, O. Acher, K. U. Barholz and R. Mattheis: Exchange bias anisotropy on the dynamic permeability of thin NiFe layers. J. Appl. Phys. 95, 6873 (2004).
    [20] Y. Lamy and B. Viala: NiMn, IrMn, and NiO Exchange Coupled CoFe Multilayers for Microwave Applications. IEEE Trans. Magn. 42, 3332 (2006).
    [21] N. N. Phuoc, S. L. Lim, F. Xu, Y. G. Ma and C. K. Ong: Enhancement of exchange bias and ferromagnetic resonance frequency by using multilayer antidot arrays. J. Appl. Phys. 104, 093708 (2008).
    [22] N. N. Phuoc, F. Xu and C. K. Ong: Ultrawideband microwave noise filter: Hybrid antiferromagnet/ferromagnet exchange-coupled multilayers. Appl. Phys. Lett. 94, 092505 (2009).
    [23] K. O’Grady, L. E. Fernandez-Outon and G. Vallejo-Fernandez: A new paradigm for exchange bias in polycrystalline thin films. J. Magn. Magn. Mater. 322, 883 (2010).
    [24] X. Chen, Y.G. Ma and C.K. Ong: Magnetic anisotropy and resonance frequency of patterned soft magnetic strips. J. Appl. Phys. 104, 013921 (2008).
    [25] G. Chai, Y. Yang, J. Zhu, M. Lin,W. Sui, D. Guo, X. Li and D. Xue: Adjust the resonance frequency of (Co90Nb10/Ta)n multilayers from 1.4 to 6.5 GHz by controlling the thickness of Ta interlayers. Appl. Phys. Lett. 96, 012505 (2010).
    [26] N. N. Phuoca, L. T. Hungb and C.K. Ong: Ultra-high ferromagnetic resonance frequency in exchange-biased system. J. of Alloys and Comp. 506, 504 (2010).
    [27] K. Takano, R. H. Kodama, A.E. Berkowitz, W. Cao and G. Thomas: Interfacial Uncompensated Antiferromagnetic Spins: Role in Unidirectional Anisotropy in Polycrystalline Ni81Fe19/CoO Bilayers. Phys. Rev. Lett. 79, 1130 (1997).
    [28] K. Takano, R. H. Kodama, A. E. Berkowitz, W. Cao and G. Thomas: Role of interfacial uncompensated antiferromagnetic spins in unidirectional anisotropy in Ni81Fe19/CoO bilayers. J. Appl. Phys. 83, 6888 (1998).
    [29] M. D. Stiles and R.D. McMichael: Model for exchange bias in polycrystalline ferromagnet-antiferromagnet bilayers. Phys. Rev. B 59, 3722 (1999).
    [30] T. J. Moran, J. M. Gallego and I. K. Schuller: Increased exchange anisotropy due to disorder at permalloy/CoO interfaces. J. Appl. Phys. 78, 1887 (1995).
    [31] J. Nogue s, T. J. Moran, D. Lederman, I. K. Schuller and K.V. Rao: Role of interfacial structure on exchange-biased FeF2−Fe. Phys. Rev. B 59, 6984 (1999).
    [32] A. Scholl, F. Nolting, J. Stohr, T. Regan, J. Luning, J. W. Seo, J. P. Locquet, J. Fompeyrine, S. Anders, H. Ohldag and H. A. Padmore: Exploring the microscopic origin of exchange bias with photoelectron emission microscopy. J. Appl. Phys. 89, 7266 (2001).
    [33] W. Kuch, F. Offi, L.I. Chelaru, M. Kotsugi, K. Fukumoto and J. Kirschner: Magnetic interface coupling in single-crystalline Co/FeMn bilayers. Phys. Rev. B 65, 140408(R) (2002).
    [34] B. Martinez, X. Obradors, Ll. Balcells, A. Rouanet and C. Monty: Low Temperature Surface Spin-Glass Transition in γ-Fe2O3 Nanoparticles. Phys. Rev. Lett. 80, 181 (1998).
    [35] V. Skumryev, S. Stoyanov, Y. Zhang, G. Hadjipanayis, D. Givord and J. Nogues: Beating the superparamagnetic limit with exchange bias. Nature 423, 850 (2003).
    [36] S. G. te Velthuis, G. P. Felcher, J. S. Jiang, A. Inomata, C. S. Nelson, A. Berger and S. D. Bader: Magnetic configurations in exchange-biased double superlattices. Appl. Phys. Lett. 75, 4174 (1999).
    [37] F. T. Yuan, J. K. Lin, Y. D. Yao and S. F. Lee: Exchange bias in spin glass (FeAu)/NiFe thin films. Appl. Phys. Lett. 96, 162502 (2010).
    [38] D. L. Peng, K. Sumiyama, T. Hihara, S. Yamamuro and T. J. Konno: Magnetic properties of monodispersed Co/CoO clusters. Phys. Rev. B 61, 3103 (2000).
    [39] A. P. Malozemoff: Random-field model of exchange anisotropy at rough ferromagnetic-antiferromagnetic interfaces. Phys. Rev. B 35, 3679 (1987).
    [40] D. Mauri, H. C. Siegmann, P. S. Bagus and E. Kay: Simple model for thin ferromagnetic films exchange coupled to an antiferromagnetic substrate. J. Appl. Phys. 62, 3047 (1987).
    [41] N. Koon: Calculations of Exchange Bias in Thin Films with Ferromagnetic/Antiferromagnetic Interfaces. Phys. Rev. Lett. 78, 4865 (1997).
    [42] T. C. Schulthess and W. H. Butler: Consequences of Spin-Flop Coupling in Exchange Biased Films. Phys. Rev. Lett. 81, 4516 (1998).
    [43] L. Wee, R. L. Stamps and R. E. Camley: Temperature dependence of domain-wall bias and coercivity. J. Appl. Phys. 89, 6913 (2001).
    [44] T. C. Schulthess and W. H. Butler: Consequences of Spin-Flop Coupling in Exchange Biased Films. Phys. Rev. Lett. 81, 4516 (1998).
    [45] T. C. Schulthess and W. H. Butler: Coupling mechanisms in exchange biased films. J. Appl. Phys. 85, 5510 (1999).
    [46] A. P. Malozemoff: Mechanisms of exchange anisotropy. J. Appl. Phys. 63, 3874 (1988).
    [47] J. R. L de Almeida and S. M. Rezende: Microscopic model for exchange anisotropy. Phys. Rev. B 65, 092412 (2002).
    [48] U. Nowak, A. Misra and K. D. Usadel: Domain state model for exchange bias. J. Appl. Phys. 89, 7269 (2001).
    [49] H. Xi and R. M. White: Antiferromagnetic thickness dependence of exchange biasing. Phys. Rev. B 61, 80 (2000).
    [50] E. Fulcomer and S. H. Charap: Thermal fluctuation aftereffect model for some systems with ferromagnetic-antiferromagnetic coupling. J. Appl. Phys. 43, 4190 (1972).
    [51] S. Soeya, T. Imagawa, S. Mitsuoka and S. Narishige: Distribution of blocking temperature in bilayered Ni81Fe19/NiO films. J. Appl. Phys. 76, 5356 (1994).
    [52] V. Baltz, J. Sort, B. Rodmacq, B. Dieny and S. Landis: Thermal activation effects on the exchange bias in ferromagnetic-antiferromagnetic nanostructures. Phys. Rev. B 72, 104419 (2005).
    [53] V. Baltz, B. Rodmacq, A. Zarefy, L. Lechevallier and B. Dieny: Bimodal distribution of blocking temperature in exchange-biased ferromagnetic/antiferromagnetic bilayers. Phys. Rev. B 81, 052404 (2010).
    [54] C. K. Safeer, M. Chamfrault, J. Allibe, C. Carretero, C. Deranlot, E. Jacquet, J. F. Jacquot, M. Bibes, A. Barthelemy, B. Dieny, H. Bea and V. Baltz: Anisotropic bimodal distribution of blocking temperature with multiferroic BiFeO3 epitaxial thin films. Appl. Phys. Lett. 100, 072402 (2012).
    [55] J. Ventura, J. P. Araujo, J. B. Sousa, A. Veloso and P. P. Freitas: Distribution of blocking temperatures in nano-oxide layers of specular spin valves. J. Appl. Phys. 101, 113901 (2007).
    [56] M. Ali, P. Adie, C. H. Marrows, D. Greig, B. J. Hickey and R. L. Stamps: Exchange bias using a spin glass. Nat. Mater. 6, 70 (2007).
    [57] F. T. Yuan, Y. D. Yao, S. F. Lee and J. H. Hsu: Coercive mechanism and training effect in Fe-Au/Ni-Fe bilayer films. J. Appl. Phys. 109, 07E148 (2011).
    [58] A. G. Biternas, U. Nowak and R. W. Chantrell: Training effect of exchange-bias bilayers within the domain state model. Phys. Rev. B 80, 134419 (2009).
    [59] M. Gruyters: Spin-Glass-Like Behavior in CoO Nanoparticles and the Origin of Exchange Bias in Layered CoO/Ferromagnet Structures. Phys. Rev. Lett. 95, 077204 (2005).
    [60] A. Ercole, T. Fujimoto, M. Patel, C. Daboo, R. J. Hicken and A. C. Bland: Direct measurement of magnetic anisotropies in epitaxial FeNi/Cu/Co spin-valve structures by Brillouin light scattering. J. Magn. Magn. Magn. Mater. 156, 121 (1996).
    [61] B. H. Miller and E. Dan Dahlberg: Use of the anisotropic magnetoresistance to measure exchange anisotropy in Co/CoO bilayers. Appl. Phys. Lett. 69, 3932 (1996).
    [62] V. Strom, B. J. Jonsson, K. V. Rao and D. Dahlberg: Determination of exchange anisotropy by means of ac susceptometry in Co/CoO bilayers. J. Appl. Phys. 81, 5003 (1997).
    [63] F. B. Abdulahad, D. S. Hung, Y. C. Chiu and S. F. Lee: Exchange Bias Effect on the Relaxation Behavior of the IrMn/NiFe Bilayer System. IEEE Trans. Mag. 47, 4227 (2011).
    [64] T. G. Philipps and H. M. Rosenberg: Spin waves in ferromagnets. Rep. Prog. Phys. 29, 285 (1966).
    [65] B. Heinrich and J. F. Cochran: Ultrathin metallic magnetic films: magnetic anisotropies and exchange interactions. Adv. Phys. 42, 523 (1993).
    [66] M. Farle: Ferromagnetic resonance of ultrathin metallic layers. Rep. Prog. Phys. 61, 755 (1998).
    [67] J. D. Adam and S. N. Stitzer: A magnetostatic wave signal‐to‐noise enhancer. Appl. Phys. Lett. 36, 485 (1980).
    [68] W. S. Ishak: Magnetostatic wave technology - A review. Proc. IEEE 76, 171 (1988).
    [69] H. How, W. Hu, C. Vittoria, L. C. Kempel and K. D. Trott: Single-crystal yttrium iron garnet phase shifter at X band. J. Appl. Phys. 85, 4853 (1999).
    [70] N. Cramer, D. Lucic, R. E. Camley and Z. Celinski: High attenuation tunable microwave notch filters utilizing ferromagnetic resonance. J. Appl. Phys. 87, 6911 (2000).
    [71] J. McCord, R. Mattheis and D. Elefant: Dynamic magnetic anisotropy at the onset of exchange bias - The NiFe/IrMn ferromagnet/antiferromagnet system. Phys. Rev. B 70, 094420 (2004)
    [72] J. McCord, R. Kaltofen, T. Gemming, R. Huhne and L. Schultz: Aspects of static and dynamic magnetic anisotropy in Ni81Fe19-NiO films. Phys. Rev. B 75, 134418 (2007).
    [73] J. Keller, P. Miltenyi, B. Beschoten, G. Guntherodt, U. Nowak and K. D. Usadel: Domain state model for exchange bias. ii. experiments. Phys. Rev. B, 66, 014431 (2002).
    [74] H. Ohldag, A. Scholl, F. Nolting, E. Arenholz, S. Maat, A. T. Young, M. Carey and J. Stohr: Correlation between exchange bias and pinned interfacial spins. Phys. Rev. Lett., 91, 017203 (2003).
    [75] U. Nowak, K.D. Usadel, J. Keller, P. Miltényi, B. Beschoten and G. Güntherodt: Domain state model for exchange bias. I. Theory. Phys. Rev. B 66, 014430 (2002).
    [76] J. V. Kim and R. L. Stamps: Hysteresis from antiferromagnet domain-wall processes in exchange-biased systems: Magnetic defects and thermal effects. Phys. Rev. B 71, 094405 (2005).
    [77] C. Leighton, M. R. Fitzsimmons, A. Hoffmann, J. Dura, C. F. Majrkzak, M. S. Lund and I. K. Schuller: Thickness-dependent coercive mechanisms in exchange-biased bilayers. Phys. Rev. B 65, 064403 (2002).
    [78] M. Ali, C. H. Marrows, M. Al-Jawad, B. J. Hickey, A. Misra, U. Nowak and K. D. Usadel: Antiferromagnetic layer thickness dependence of the IrMn/Co exchange-bias system. Phys. Rev. B 68, 214420 (2003).
    [79] Faris B. Abdulahad, D. S. Hung and S. F. Lee: Temperature dependence of static and dynamic magnetic properties in NiFe/IrMn bilayer system. J. Mater. Res. 29, 1237 (2014).
    [80] D. Paccard, C. Schlenker, O. Massenet, R. Montmory and A. Yelon: A New Property of Ferromagnetic-Antiferromagnetic Coupling. Phys. Stat. Sol. B 16, 301 (1966).
    [81] K. Zhang, T. Zhao and F. Fujiwara: Training effect in ferro(f)/antiferromagnetic (af) exchange coupled systems - Dependence on AF thickness. J. Appl. Phys. 91, 6902 (2002).
    [82] A. Hochstrat, Ch. Binek and W. Kleemann: Training of the exchange-bias effect in NiO-Fe heterostructures. Phys. Rev. B 66, 092409 (2002).
    [83] F. Radu, M. Etzkorn, T. Schmitte, R. Siebrecht, A. Schreyer, K. Westerholt and H. Zabel: Asymmetric magnetization reversal on exchange bias CoO/Co bilayers. J. Magn. Magn. Mater. 240, 251 (2002).
    [84]. T. Gredig, I. N. Krivorotov, P. Eames and D. Dahlberg: Unidirectional coercivity enhancement in exchange-biased Co/CoO. Appl. Phys. Lett. 81, 1270 (2002).
    [85] F. Radu, M. Etzkorn, R. Siebrecht, T. Schmitte, K. Westerholt and H. Zabel: Interfacial domain formation during magnetization reversal in exchange-biased CoO/Co bilayers. Phys. Rev. B 67, 134409 (2003).
    [86] J. McCord, R. Mattheis and R. Schafer: Kerr observations of asymmetric magnetization reversal processes in CoFe/IrMn bilayer systems. J. Appl. Phys. 93, 5491 (2003).
    [87]U. Welp, S.G.E. teVelthuis, G.P. Felcher, T. Gredig and E.D. Dahlberg: Domain formation in exchange biased Co/CoO bilayers. J. Appl. Phys. 93, 7726 (2003).
    [88] S. Brems, D. Buntinx, K. Temst, C. V. Haesendonck, F. Radu and H. Zabel: Reversing the training effect in exchange biased CoO/Co bilayers. Phys. Rev. Lett. 95, 157202 (2005).
    [89] K. Temst, E. Popova, H. Loosvelt, M. J. Van Bael, S. Brems, Y. Bruynseraede, C. Van Haesendonck, H. Fritzsche, M. Gierlings, L. H. A. Leunissen and R. Jonckheere: The influence of finite size and shape anisotropy on exchange bias - A study of patterned Co/CoO nanostructures. J. Magn. Magn. Mater. 304, 14 (2006).
    [90] T. Gredig, I. N. Krivorotov and E. Dan Dahlberg: Temperature dependence of magnetization reversal and angular torque in Co/CoO. Phys. Rev. B. 74, 094431 (2006).
    [91]. F. Nolting, A. Scholl, J. Stohr, J. W. Seo, J. Fompeyrine, H. Siegwart, J. P. Locquet, S. Anders, J. Luning, E. E. Fullerton, M. F. Toney, M. R. Scheinfeink and H. A. Padmore: Direct observation of the alignment of ferromagnetic spins by antiferromagnetic spins. Nature, 405, 767 (2000).
    [92] F. Radu and H. Zabel: Exchange Bias Effect of Ferro-/Antiferromagnetic Heterostructures. Part of: Magnetic Heterostructures-Advances and Perspectives in Spinstructures and Spintransport, Springer Tracts in Modern Physics, vol. 227, pp. 97–184. Springer, Berlin-Heidelberg (2008).
    [93] V. I. Nikitenko, V. S. Gornakov, A. J. Shapiro, R. D. Shull, K. Liu, S. M. Zhou and C. L. Chien: Asymmetry in Elementary Events of Magnetization Reversal in a Ferromagnetic/Antiferromagnetic Bilayer. Phys. Rev. Lett. 84, 765, (2000).
    [94] P. Nordblad, J. Mattsson and W. Kleemann: Low field excess magnetization in Fe0.7Mg0.3Cl2. J. Magn. Magn. Mater. 140-144, 1553 (1995).
    [95] N. J. Gokemeijer, J. W. Cai and C. L. Chien: Memory effects of exchange coupling in ferromagnet/antiferromagnet bilayers. Phys. Rev. B 60, 3033 (1999).
    [96] N. J. Gokemeijer and C. L. Chien: Memory effects of exchange coupling in CoO/Ni81Fe19 bilayers. J. Appl. Phys. 85, 5516 (1999).
    [97] R. Pradheesh, H. S. Nair, V. Sankaranarayanan and K. Sethupathi: Exchange bias and memory effect in double perovskite Sr2FeCoO6. Appl. Phys. Lett. 101, 142401 (2012).
    [98] B. Kagerer, Ch. Binek and W. Kleemann: Freezing field dependence of the exchange bias in uniaxial FeF2-CoPt heterosystems with perpendicular anisotropy. J. Magn. Magn. Mater. 217, 139 (2000).
    [99] J. Nogués, D. Ledermann, T. J. Moran and I. K. Schuller: Positive Exchange Bias in FeF2-Fe Bilayers. Phys. Rev. Lett. 76, 4624 (1996).
    [100] J. Nogués, C. Leighton and Ivan K. Schuller: Correlation between antiferromagnetic interface coupling and positive exchange bias. Phys. Rev. B 61, 1315 (2000).
    [101] J. P. Liu, E. Fullerton, O. Gutfleisch and D. J. Sellmyer: Nanoscale Magnetic Materials and Applications. Springer Dordrecht Heidelberg London New York (2009).
    [102] N. N. Phuoc, F. Xu and C. K. Ong: Ultrawideband microwave noise filter - Hybrid antiferromagnet/ferromagnet exchange-coupled multilayers. Appl. Phys. Lett. 94, 092505 (2009).
    [103] F. B. Abdulahad, D. S. Hung, Y. C. Chiu and S. F. Lee: Exchange Bias Effect on the Relaxation Behavior of the IrMn/NiFe Bilayer System. IEEE Trans. Mag. 47, 4227 (2011).
    [104] D. S. Geoghegan, P. G. McCormick and R. Street: Mater. Sci. Forum 179-181, 629 (1995).
    [105] W. H. Meiklejohn: Exchange Anisotropy in the Iron-Iron Oxide System. J. Appl. Phys. 29, 454 (1958).
    [106] F. J. Darnell: Exchange Anisotropy in Oxidized Iron-Cobalt Particles. J. Appl. Phys. 32, S186 (1961).
    [107] V. Papaefthymiou, A. Kostikas, A. Simopulos, D. Niarchos, S. Gangopadhyay, G. C. Hadjipanayis, C. M. Sorensen and K. J. Klabunde: Magnetic hysteresis and Mössbauer studies in ultrafine iron particles. J. Appl. Phys. 67, 4487 (1990).
    [108] C. M. Hsu, H. M. Lin and K. R. Tsai: High resolution transmission electron microscopy and magnetic properties of nanocrystalline iron particles with oxidized and nitrided surfaces. J. Appl. Phys. 76, 4793 (1994).
    [109] H. M. Lin, C. M. Hsu, Y. D. Yao, Y. Y. Chen, T. T. Kuan, F. A. Kuan, F. A. Yang and C. Y. Tung: Magnetic study of both nitrided and oxidized CO particles. NanoStruct. Mater. 6, 977 (1995).
    [110] T. Iwata, K. Kai, T. Nakamichi and M. Yamamoto: Exchange Anisotropy in Single Crystals of Cu-Mn Alloys. J. Phys. Soc. Japan 28, 582 (1970).
    [111] J. S. Kouvel: The ferromagnetic-antiferromagnetic properties of copper-manganese and silver-manganese alloys. J. Phys. Chem. Sol. 21, 57 (1961).
    [112] J. S. Kouvel and C. D. Graham Jr.: Exchange anisotropy in disordered nickel-manganese alloys. J. Phys. Chem. Sol. 11, 220 (1959).
    [113] W. Abdul-Razzaq and M. Wu: Synthesis and magnetization of a reentrant Ni‐Mn thin-film system. J. Appl. Phys. 69, 5078 (1991).
    [114] H. Morita, H. Hiroyoshi and K. Fukamichi: Field cooling effect on magnetic anisotropy of amorphous Fe91.4Zr86 alloy. J. Phys. F: Met. Phys. 16, 507 (1986).
    [115] R. B.Goldfarb, K. V. Rao, F. R. Fickett and H. S. Chen: Magnetic susceptibility studies of amorphous Ni-Mn-P-B-Al alloys. J. Appl. Phys. 52, 1744 (1981).
    [116] B. Aktas, Y. Oner and H. Z. Durusoy: A spin-wave resonance study on reentrant NiMn films. J. Magn. Magn. Mater. 119, 339 (1993).
    [117] V. Korenivski, R. B. van Dover, Y. Suzuki, E. M. Gyorgy, J. M. Phillips and R. J. Felder: Interlayer exchange coupling in amorphous/crystalline NiFe2O4 thin-film bilayers. J. Appl. Phys. 79, 5926 (1996).
    [118] T. J. Moran, J. M. Gallego and I. K. Schuller: Increased exchange anisotropy due to disorder at permalloy/CoO interfaces. J. Appl. Phys. 78, 1887 (1995).
    [119] J. Bransky, I. Bransky and A. A. Hirsch: Exchange Anisotropy in Thin Cobalt Films Deposited on a CoO Single-Crystal Substrate. J. Appl. Phys. 41, 183 (1970).
    [120] C. Schlenker and R. Buder: Ferro-antiferromagnetic coupling between a nife thin film and its NiO single crystal substrate. Phys. Stat. Sol. A 4, K79 (1971).
    [121] Y. Iwasaki, M. Takiguchi and K. Bessho: Spin-polarized secondary electron microscopy of soft magnetic films on antiferromagnetic substrates. J. Appl. Phys. 81, 5021 (1997).
    [122] T. J. Moran, J. Nogues, D. Lederman and I. K. Schuller: Perpendicular coupling at Fe–FeF2 interfaces. Appl. Phys. Lett. 72, 617 (1998).
    [123] T. J. Moran and I. K. Schuller: Effects of cooling field strength on exchange anisotropy at permalloy/CoO interfaces. J. Appl. Phys. 79, 5109 (1996).
    [124] W. C. Cain and M. H. Kryder: Investigation of the exchange mechanism in NiFe-TbCo bilayers. J. Appl. Phys. 67, 5722 (1990).
    [125] P. J. van der Zaag, R. M. Wolf, A. R. Ball, C. Bordel, L. F. Feiner and R. Jungblut: A study of the magnitude of exchange biasing in [111] Fe3O4/CoO bilayers. J. Magn. Magn. Mater. 148, 346 (1995).
    [126] T. Tokunaga, M. Taguchi, T. Fukami, Y. Nakaki and K. Tsutsumi: Study of interface wall energy in exchange-coupled double-layer film. J. Appl. Phys. 67, 4417 (1990).
    [127] J. C. S. Kools: Exchange-biased spin-valves for magnetic storage. IEEE Trans. Magn. 32, 3165 (1996).
    [128] C. Tang: Magnetics of small magnetoresistive sensors (invited). J. Appl. Phys. 55, 2226 (1984).
    [129] R. Jungblut, R. Coehoorn, M. T. Johnson, J. aan de Stegge and A. Reinders: Orientational dependence of the exchange biasing in molecular-beam-epitaxy- grown Ni80Fe20/Fe50Mn50 bilayers (invited). J. Appl. Phys. 75, 6659 (1994).
    [130] J. Nogues, D. Lederman, T. J. Moran, I. K. Schuller and K.V. Rao: Large exchange bias and its connection to interface structure in FeF2–Fe bilayers. Appl. Phys. Lett. 68, 3186 (1996).
    [131] M. Tan, H. C. Tong, S. I. Tan and R. Rottmayer: Early development of neutron scattering by magnetic materials (invited; abstract). J. Appl. Phys. 79, 5021 (1996).
    [132] A. J. Devasahayam and M. H. Kryder: The effect of sputtering conditions on the exchange fields of CoxNi1-xO and NiFe. IEEE Trans. Magn. 31, 3820 (1995).
    [133] M. J. Carey and A. E. Berkowitz: Exchange anisotropy in coupled films of Ni81Fe19 with NiO and CoxNi1−xO. Appl. Phys. Lett. 60, 3060 (1992).
    [134] O. Massanet, R. Montmory and C. R. Acad: Sci. Paris 258, 1752 (1964).
    [135] C. M. Park, K. I. Min and K. H. Shin: Effects of surface topology and texture on exchange anisotropy in NiFe/Cu/NiFe/FeMn spin valves. J. Appl. Phys. 79, 6228 (1996).
    [136] T. Lin, C. Tsang, R. E. Fontana Jr. and J. K. Howard: Exchange-coupled Ni-Fe/Fe-Mn, Ni-Fe/Ni-Mn and NiO/Ni-Fe films for stabilization of magnetoresistive sensors. IEEE Trans. Magn. 31, 2584 (1995).
    [137] R. Nakatani, H. Hoshiya, K. Hoshino and Y. Sugita: Exchange coupling of (Mn-Ir, Fe-Mn)/Ni-Fe-Co and Ni-Fe-Co/(Mn-Ir, Fe-Mn) films formed by ion beam sputtering. IEEE Trans. Magn. 33, 3682 (1997).
    [138] R. Nakatani, H. Hoshiya, K. Hoshino and Y. Sugita: Relationship between film structure and exchange coupling in Mn-Ir/Ni-Fe films. J. Magn. Magn. Mater. 173, 321 (1997).
    [139] H. Iwasaki, A. T. Saito, A. Tsutai and M. Sahashi: Excellent reliability of CoFe-IrMn spin valves. IEEE Trans. Magn. 33, 2875 (1997).
    [140] Y. T. Chen: The effect of interface texture on exchange biasing in Ni80Fe20/Ir20Mn80 system. Nanoscale Res. Lett. 4, 90 (2009).
    [141]. C. C. Y. Andrew, X. F. Han, J. Murai, Y. Ando, T. Miyazaki and K. Hiraga: Microstructural and magnetic characteristics of IrMn exchange-biased tunnel junctions. J. Magn. Magn. Mater. 240, 130 (2002).
    [142]. D. Lacour, O. Durand, J. L. Maurice, H. Jaffre`s, F. Nguyen Van Dau, F. Petroff, P. Etienne, J. Humbert and A. Vaures: On the use of exchange biased top electrodes in magnetic tunnel junctions. J. Magn. Magn. Mater. 270, 403 (2004).
    [143]. L. Hua-Rui, R. Tian-Ling, Q. Bin-Jun, L. Li-Tian, K. Wan-Jun and L. Wei: The optimization of Ta buffer layer in magnetron sputtering IrMn top spinvalve. Thin Solid Films 441, 111 (2003).
    [144]. J. van Driel, F. R. de Boer, K. M. H. Lenssen and R. Coehoorn: Exchange biasing by Ir19Mn81: Dependence on temperature, microstructure and antiferromagnetic layer thickness. J. Appl. Phys. 88, 975 (2000).
    [145]. S. F. Cheng and P. Lubitz: Structural and magnetic studies of exchange bias films of Ir(20)Mn(80). J. Appl. Phys. 87, 4927 (2000).
    [146]. O. Acher, S. Queste, K.U. Barholz and R. Mattheis: High-frequency permeability of thin NiFe/IrMn layers. J. Appl. Phys. 93, 6668 (2003).
    [147] H. Xi, B. Bian, K. R. Mountfield, Z. Zhuang, D. E. Laughlin and R. M. White: Dependence of exchange bias in Ni81Fe19/PtxMn1-x (0<x<0.2) bilayers on composition and microstructure. J. Magn. Mag. Mat. 260, 273 (2003).
    [148] T. J. Regan, H. Ohldag, C. Stamm, F. Nolting, J. Luning, J. Stohr and R. L. White: Chemical effects at metal/oxide interfaces studied by x-ray- absorption spectroscopy. Phys. Rev. B. 64, 214422, (2001).
    [149] V. K. Valev, M. Gruyters, A. Kirilyuk and Th. Rasing. Direct observation of exchange bias related uncompensated spins at the CoO/Cu interface. Phys. Rev. Lett. 96, 067206, (2006).
    [150] N. M. Salansky, B. P. Khrustalev, A. A. Glazer, A. S. Melnik and Z. I. Sinegubova: Temperature Dependence of Ferromagnetic Resonance in Films with Unidirectional Anisotropy. Sov. Phys. JETP 30, 823 (1970).
    [151] J. H. E. Griffiths: Anomalous High-frequency Resistance of Ferromagnetic Metals. Nature 158, 670 (1946).
    [152] C. Kittel: Interpretation of Anomalous Larmor Frequencies in Ferromagnetic Resonance Experiment. Phys. Rev. 71, 270 (1947).
    [153] S. E. Barnes: Theory of electron spin resonance of magnetic ions in metals. Adv. Phys. 30, 801 (1981).
    [154] Z. Frait and D. Fraitova: Spin-wave resonance in metals Spin Waves and Magnetic Excitations. Vol. 2, ed A S Borovik-Romanov and S K Schiha (Amsterdam: Elsevier), (1988).
    [155] B. Heinrich and J. F. Cochran: Ultrathin metallic magnetic films - magnetic anisotropies and exchange interactions. Adv. Phys. 42, 523 (1993).
    [156] B. Heinrich: Ultrathin Magnetic Structures. Vols I and II (Berlin: Springer), (1994).
    [157] J. Pelzl and U. Netzelmann: Locally resolved magnetic resonance in ferromagnetic layers and films Topics in Current Physics. Vol 47 (Berlin: Springer) pp 313–65, (1989).
    [158] T. G. Philipps and H. M. Rosenberg: Spin waves in ferromagnets. Rep. Prog. Phys. 29, 285 (1966).
    [159] S. F. Cheng, J. P. Teter, P. Lubitz, M. M. Miller, L. Hoines, J. J. Krebs, D. M. Schaefer and G. A. Prinz: Factors affecting performance of NiO biased giant magnetoresistance structures. J. Appl. Phys. 79, 6234 (1996).
    [160] K. Hoshino, R. Nakatani, H. Hoshiya, Y. Sugita and S. Tsunashima: Exchange Coupling between Antiferromagnetic Mn–Ir and Ferromagnetic Ni–Fe Layers. Jpn. J. Appl. Phys. 35, 607 (1996).
    [161] K. Tagaya and M. Fukada: Exchange Anisotropy of Ni-Ferrite Precipitates in Fe-Doped NiO. J. Phys. Soc. Japan 46, 53 (1979).
    [162] A. Layadi, W. C. Cain, J. W. Lee and J. O. Artman: Investigation of anisotropy by ferromagnetic resonance (FMR) in exchange-coupled bilayer films. IEEE Trans. Magn. 23, 2993 (1987).
    [163] N. M. Salansky, B. P. Khrustalev, A. S. Melnik, L. A. Slanskaya and Z. I. Sinegubova: Ferromagnetic resonance linewidth in thin magnetic films. Thin Solid Films 4, 105 (1969).
    [164] N. M. Salansky, B. P. Khrustalev and A. S. Melnik: Ferromagnetic Resonance in Films with Ferro-antiferromagnetic Interaction . Sov. Phys. JETP 29, 238 (1969).
    [165] Y. V. Zakharov, B. P. Khrustalev, E. A. Khlebopros and A. S. Melnik: Sov. Phys. Sol. State 25, 1928 (1983).
    [166] W. Stoecklein, S. S. P. Parkin and J. C. Scott: Ferromagnetic resonance studies of exchange-biased Permalloy thin films. Phys. Rev. B 38, 6847 (1988).
    [167] B. Aktas, Y. Oner and H.Z. Durusoy: A spin-wave resonance study on reentrant NiMn films. J. Magn. Magn. Mater. 119, 339 (1993).
    [168] M. M. P. Janssen: Observation of Spin Wave Resonance in Ni Thin Films after Adsorption of Oxygen. J. Appl. Phys. 41, 399 (1970).
    [169] B. Waksmann, O. Massanet, P. Escudier and C.F. Kooi: Spin-Wave Resonance in Epitaxial Fe–Ni Films and in Coupled Double Layers of Epitaxial Fe–Ni (Ferromagnetic)—Fe–Ni–Mn (Antiferromagnetic). J. Appl. Phys. 39, 1389 (1968).
    [170] B. P. Khrustalev and A. S. Melnik: Phys. Met. Metall. 36, 204 (1973).
    [171] J. C. Scott: Ferromagnetic resonance studies in the bilayer system Ni0.80Fe0.20/Mn0.50Fe0.50 - Exchange anisotropy. J. Appl. Phys. 57, 3681 (1985).
    [172] V. S. Speriosu, S. S. P. Parkin and C. H. Wilts: Standing spinwaves in FeMn/NiFe/FeMn exchange-bias structures. IEEE Trans. Magn. 23, 2999 (1987).
    [173] A. Layadi, J. W. Lee and J. O. Artman: Spin‐wave FMR in annealed NiFe/FeMn thin films. J. Appl. Phys. 63, 3808 (1988).
    [174] A. Layadi, J. W. Lee and J. O. Artman: FMR and TEM studies of annealed and magnetically annealed thin bilayer films. J. Appl. Phys. 64, 6101 (1988).
    [175] Landolt-Bornstein: Magnetic Properties of Metals Vol III/19a, ed HPJ Wijn (Berlin: Springer), (1986).
    [176] J. Pelzl and U. Netzelmann: Locally resolved magnetic resonance in ferromagnetic layers and films Topics in Current Physics. Vol 47 (Berlin: Springer) pp 313–65 (1989).
    [177] Z. Celinski, K. B. Urquhart and B. Heinrich: Using ferromagnetic resonance to measure the magnetic moments of ultrathin films. J. Magn. Magn. Mater. 166, 6 (1997).
    [178] C. Kittel: On the Theory of Ferromagnetic Ressonance Absorption. Phys. Rev. 73, 155 (1948).
    [179] J. van Driel, R. Coehoorn, K. M. H. Lenssen, A. E. T. Kuiper and F. R. de Boer: Thermal stability of Ir–Mn as exchange biasing material. J. Appl. Phys. 85, 5522 (1999).
    [180] E. Fulcomer and S. H. Charap: Thermal fluctuation aftereffect model for some systems with ferromagnetic antiferromagnetic coupling. J. Appl. Phys. 43, 4190 (1972).
    [181] R. Coehoorn, In: K. H. J. Buschow (Ed.), Handbook of Magnetic Materials, Vol. 15, North-Holland, Amterdam, (2003).

    Chapter 3:
    [1] R. Coehoorn, In: K. H. J. Buschow (Ed.): Handbook of Magnetic Materials. Vol. 15, North-Holland, Amterdam (2003).
    [2] R. Coehoorn, J. T. Kohlhepp, R. M. Jungblut, A. Reinders and M. J. Dekker: Mesoscopic magnetism and the phenomenon of exchange anisotropy - MBE grown Cu(110)/Ni80Fe20/Fe50Mn50 bilayers with corrugated interfaces. Physica B 319, 141 (2002).
    [3] E. Stoner and E. Wohlfarth: Interpretation of high coercivity in ferromagnetic materials. Nature 160, 650 (1947).
    [4] E. C. Stoner and E. P. Wohlfarth: A mechanism of magnetic hysteresis in heterogeneous alloys. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 240, 599 (1948).
    [5] F. Radu and H. Zabel: Exchange Bias Effect of Ferro-/Antiferromagnetic Heterostructures. Part of: Magnetic Heterostructures-Advances and Perspectives in Spinstructures and Spintransport. Springer Tracts in Modern Physics, Vol. 227, pp. 97–184. Springer, Berlin-Heidelberg, (2008).
    [6] W. H. Meiklejohn and C. P. Bean: New Magnetic Anisotropy. Phys. Rev. 105, 904 (1957).
    [7] M. Kiwi: Exchange bias theory. J. Magn. Magn. Mater. 234, 584 (2001).
    [8] F. Radu, M. Etzkorn, R. Siebrecht, T. Schmitte, K. Westerholt and H. Zabel: Interfacial domain formation during magnetization reversal in exchange-biased CoO/Co bilayers. Phys. Rev. B 67, 134409 (2003).
    [9] T. Gredig, I. N. Krivorotov, P. Eames and D. Dahlberg: Unidirectional coercivity enhancement in exchange-biased Co/CoO. Appl. Phys. Lett. 81, 1270 (2002).
    [10] C. Prados, E. Pina, A. Hernando and A. Montone: Reversal of exchange bias in nanocrystalline antiferromagnetic-ferromagnetic bilayers. J. Phys.: Condens. Matter. 14, 10063 (2002).
    [11] Hongtao Shi, Zhongyuan Liu and David Lederman: Exchange bias of polycrystalline co on single-crystalline FexZn1−xF2 thin films. Phys. Rev. B 72, 224417 (2005).
    [12] M. Ali, P. Adie, C. H. Marrows, D. Greig, B. J. Hickey and R. L. Stamps: Exchange bias using a spin glass. Nat. Mat. 6, 70 (2007).
    [13] J. Nogues, D. Lederman, T. J. Moran and I. K. Schuller: Positive exchange bias in FeF2-Fe bilayers. Phys. Rev. Lett. 76, 4624 (1996).
    [14] C. Leighton, J. Nogues, H. Suhl and I. K. Schuller: Competing interfacial exchange and Zeeman energies in exchange biased bilayers. Phys. Rev. B 60, 12837 (1999).
    [15] T. M. Hong: Simple mechanism for a positive exchange bias. Phys. Rev. B 58, 97 (1998).
    [16] B. Kagerer, C. Binek and W. Kleemann: Freezing field dependence of the exchange bias in uniaxial FeF2-CoPt heterosystems with perpendicular anisotropy. J. Magn. Magn. Mater. 217, 139 (2000).
    [17] T. L. Kirk, O. Hellwig and E. E. Fullerton: Coercivity mechanisms in positive exchange-biased Co films and Co/Pt multilayers. Phys. Rev. B 65, 224426 (2002).
    [18] J. Noguésa, J. Sort, V. Langlaisb, V. Skumryeva, S. Suriñachb, J. S. Muñozb and M. D. Barób: Exchange bias in nanostructures. Phys. Rep. 422, 65 (2005).
    [19] W. H. Meiklejohn and C. P. Bean: New Magnetic Anisotropy. Phys. Rev. 102, 1413 (1956).
    [20] D. Mauri, H. C. Siegmann, P. S. Bagus and E. Kay: Simple model for thin ferromagnetic films exchange coupled to an antiferromagnetic substrate. J. Appl. Phys. 62, 3047 (1987).
    [21] R. Coehoorn: Exchange anisotropy, Stoner-Wolhfarth model. Lecture Notes, Eindhoven University of Technology, Eindhoven University of Technology (2000-2001).
    [22] D. Mauri, E. Kay, D. Scholl and J. K. Howard: Novel method for determining the anisotropy constant of MnFe in a NiFe/MnFe sandwich. J. Appl. Phys. 62, 2929 (1987).
    [23] W. H. Meiklejohn. Exchange anisotropy - a review. J. Appl. Phys. 33, 1328 (1962).
    [24] H. Fujiwara, C. Hou, M. Sun and H. S. Cho: Effect of exchange coupling of polycrystalline antiferromagnetic layers on the magnetization behavior of soft magnetic layers. IEEE Trans. Magn. 35, 3082 (1999).
    [25] L. Néel: Etude théorique du couplage ferro-antiferromagnetique dans les couches minces. Annales de Physique 2, 61 (1967).
    [26] N. Kurti (Editor): Selected Works of Louis Néel, Gordon and Breach Science Publishers, NewYork, (1988). Includes an English translation of Ref. [25].
    [27] P. Blomqvist, K. M. Krishnan and H. Ohldag: Direct Imaging of Asymmetric Magnetization Reversal in Exchange-Biased Fe/MnPd Bilayers by X-Ray Photoemission Electron Microscopy. Phys. Rev. Lett. 94, 107203 (2005).
    [28] M. Kiwi, J. M. López, R. D. Portugal and R. Ramı́rez: Exchange-bias systems with compensated interfaces. APL 75, 3995 (1999).
    [29] M. Kiwi, J. M. López, R. D. Portugal and R. Ramírez: Exchange bias model for Fe/FeF - Role of domains in the ferromagnet. Euro. phys. Lett. 48, 573 (1999).
    [30] M. Kiwi, J. M. López, R. D. Portugal and R. Ramírez: Positive exchange bias model - Fe/FeF2 and Fe/MnF2 bilayers. Sol. Sta. Comm. 116, 315 (2000).
    [31] M. Kiwi: Exchange bias theory. J. Magn. Magn. Mat. 234, 584 (2001).
    [32] T. Ambrose, R. L. Sommer and C. L. Chien: Angular dependence of exchange coupling in ferromagnet/antiferromagnet bilayers. Phys. Rev. B 56, 83 (1997);
    [33] S. M. Zhou, K. Liu and C. L. Chien: Exchange coupling and macroscopic domain structure in a wedged permalloy/FeMn bilayer. Phys. Rev. B 58, R14717 (1998).
    [34] A. R. Ball, A. J. G. Leenaers, P. J. van der Zaag, K. A. Shaw, B. Singer, D. M. Lind, H. Fredrikze and M. Th. Rekveldt: Polarized neutron reflectometry study of an exchange biased Fe3O4/NiO multilayer. Appl. Phys. Lett. 69, 1489 (1996).
    [35] A. S. Carrico, R. E. Camley and R. L. Stamps: Phase diagram of thin antiferromagnetic films in strong magnetic fields. Phys. Rev. B 50, 13453 (1994).
    [36] J. V. Kim, R. L. Stamps, B. V. McGrath and R. E. Camley: Angular dependence and interfacial roughness in exchange-biased ferromagnetic/antiferromagnetic bilayers. Phys. Rev. B 61, 8888 (2000).
    [37] R. L. Stamps: Dynamic magnetic hysteresis and anomalous viscosity in exchange bias systems. Phys. Rev. B 61, 12174 (1999).
    [38] R. L. Stamps: Mechanisms of exchange bias. J. Phys. D: Appl. Phys. 33, R247 (2000).
    [39] J. V. Kim and R. L. Stamps: Theory of long-wavelength spin waves in exchange biased bilayers. J. Appl. Phys. 89, 7651 (2001).
    [40] J. V. Kim and R. L. Stamps: Defect-modified exchange bias. Appl. Phys. Lett. 79, 2785 (2001).
    [41] J. V. Kim and R. L. Stamps: Hysteresis from antiferromagnet domain-wall processes in exchange-biased systems. J. Magn. Magn. Mat. 286, 233 (2005).
    [42] J. V. Kim and R. L. Stamps: Hysteresis from antiferromagnet domain-wall processes in exchange-biased systems - Magnetic defects and thermal effects. Phys. Rev. B 71, 094405 (2005).
    [43] F. Radu, A. Westphalen, K. Theis-Brohl and H. Zabel: Quantitative description of the azimuthal dependence of the exchange bias effect. J. Phys.: Condens. Matter. 18, L29 (2006).
    [44] Florin Radu: Fundamental aspects of exchange bias effect. PhD thesis, Ruhr University Bochum (2005).
    [45] I. S. Jacobs and J. S. Kouvel: Exchange Anisotropy in Mixed Manganites with the Hausmannite Structure. Phys. Rev. 122, 412 (1961).
    [46] J. S. Kouvel: A ferromagnetic-antiferromagnetic model for copper-manganese and related alloys. J. Phys. Chem. Sol. 24, 795 (1963).
    [47] E. Fulcomer and S. H. Charap: Thermal fluctuation aftereffect model for some systems with ferromagnetic antiferromagnetic coupling. J. Appl. Phys. 43, 4190 (1972).
    [48] A. P. Malozemoff: Random-field model of exchange anisotropy at rough ferromagnetic-antiferromagnetic interfaces. Phys. Rev. B 35, 3679 (1987).
    [49] A. P. Malozemoff: Heisenberg-to-Ising crossover in a random-field model with uniaxial anisotropy. Phys. Rev. B 37, 7673 (1988).
    [50] A. P. Malozemoff: Mechanisms of exchange anisotropy (invited). J. Appl. Phys. 63, 3874 (1988).
    [51] Y. Imry and S. K. Ma: Random-Field Instability of the Ordered State of Continuous Symmetry. Phys. Rev. Let. 35, 1399 (1975).
    [52] C. Hou, H. Fujiwara and K. Zhang: Temperature dependence of the exchange-bias field of ferromagnetic layers coupled with antiferromagnetic layers. Phys. Rev. B 63, 124411 (2000).
    [53] S. Brems, K. Temst and C. V. Haesendonck: Origin of the Training Effect and Asymmetry of the Magnetization in Polycrystalline Exchange Bias Systems. Phys. Rev. Lett. 99, 067201 (2007).
    [54] M. D. Stiles and R. D. McMichael: Model for exchange bias in polycrystalline ferromagnet-antiferromagnet bilayers. Phys. Rev. B 59, 3722 (1999).
    [55] M. Tsunoda and M. Takahashi: Single spin ensemble model for the change of unidirectional anisotropy constant by annealing on polycrystalline ferromagnetic/antiferromagnetic bilayers. J. Appl. Phys. 87, 4957 (2000).
    [56] M. Tsunoda and M. Takahashi: Exchange anisotropy of ferromagnetic/ antiferromagnetic bilayers: intrinsic magnetic anisotropy of antiferromagnetic layer and single spin ensemble model. J. Magn. Magn. Mat. 239, 149 (2003).
    [57] K. Takano, R. H. Kodama, A. E. Berkowitz, W. Cao and G. Thomas: Interfacial Uncompensated Antiferromagnetic Spins - Role in Unidirectional Anisotropy in Polycrystalline Ni81Fe19/CoO Bilayers. Phys. Rev. Lett. 79, 1130 (1997).
    [58] K. Takano, R. H. Kodama, A. E. Berkowitz, W. Cao and G. Thomas: Role of interfacial uncompensated antiferromagnetic spins in unidirectional anisotropy in Ni81Fe19/CoO bilayers. J. Appl. Phys. 83, 6888 (1998).
    [59] P. Miltényi, M. Gierlings, J. Keller, B. Beschoten, G. Güntherodt, U. Nowak and K. D. Usadel: Diluted Antiferromagnets in Exchange Bias - Proof of Domain State Model. Phys. Rev. Lett. 84, 4224 (2000).
    [60] U. Nowak, A. Misra and K. D. Usadel: Domain state model for exchange bias. J. Appl. Phys. 89, 7269 (2001).
    [61] U. Nowak, A. Misra and K. D. Usadel: Modeling exchange bias microscopically. J. Magn. Magn. Mater. 240, 243 (2001).
    [62] U. Nowak, K.D. Usadel, J. Keller, P. Miltényi, B. Beschoten and G. Güntherodt: Domain state model for exchange bias. I. Theory. Phys. Rev. B 66, 014430 (2002).
    [63] A. Misra, U. Nowak and K. D. Usadel: Control of exchange bias by diluting the antiferromagnetic layer. J. Appl. Phys. 93, 6593 (2003).
    [64] A. Misra, U. Nowak and K. D. Usadel: Structure of domains in an exchange-bias model. J. Appl. Phys. 95, 1357 (2004).
    [65] B. Beckmann, U. Nowak and K. D. Usadel: Asymmetric Reversal Modes in Ferromagnetic/Antiferromagnetic Multilayers. Phys. Rev. Lett. 91, 187201 (2003).
    [66] D. Lederman, R. Ramírez and M. Kiwi: Monte Carlo simulations of exchange bias of ferromagnetic thin films on FeF2(110). Phys. Rev. B 70, 184422 (2004).
    [67] S. H. Tasi, D. P. Landau and T. C. Schulthess: Effect of interfacial coupling on the magnetic ordering in ferro-antiferromagnetic bilayers. J. Appl. Phys. 93, 8612 (2003).
    [68] O. Heinonen: Monte Carlo simulations of ferromagnetic–antiferromagnetic grains. J. Appl. Phys. 89, 7552 (2001).
    [69] C. Mitsumata, A. Skuma and K. Fukamichi: Mechanism of the exchange-bias field in ferromagnetic and antiferromagnetic bilayers. Phys. Rev. B 68, 014437 (2003).
    [70] N. C. Koon: Calculations of Exchange Bias in Thin Films with Ferromagnetic/ Antiferromagnetic Interfaces. Phys. Rev. Lett. 78, 4865 (1997).
    [71] D. Suess, T. Schrefl, W. Scholz, J. V. Kim, R. L. Stamps and J. Fidler: Micromagnetic simulation of antiferromagnetic/ferromagnetic structures. IEEE Trans. Magn. 38, 2397 (2002).
    [72] D. Suess, K. Krishner, T. Schrefl, J. Fidler, R. L. Stamps and J. V. Kim: Exchange bias of polycrystalline antiferromagnets with perfectly compensated interfaces. Phys. Rev. B 67, 054419 (2003).
    [73] M. Kirschner, D. Suess, T. Schrefl, J. Fidler and J. N. Chapman: Micromagnetic calculation of bias field and coercivity of polycrystalline ferromagnetic/ antiferromagnetic layers. IEEE Trans. Magn. 39, 2735 (2003).
    [74] T. C. Schulthess and W.H. Butler: Consequences of Spin-Flop Coupling in Exchange Biased Films. Phys. Rev. Lett. 81, 4516 (1998).
    [75] A. L. Dantas, G. O. G. Rebouças, A. S. W. T. Silva and A. S. Carriço: Interface roughness effects on coercivity and exchange bias. J. Appl. Phys. 97, 10K105 (2005).
    [76] X. Illa, E. Vives and A. Planes: Metastable random-field Ising model with exchange enhancement:  A simple model for exchange bias. Phys. Rev. B 66, 224422 (2002).
    [77] E. Vives, X. Illa and A. Planes: A simple lattice model for hysteresis loops with exchange bias. J. Magn. Magn. Mater. 272, 703 (2004).
    [78] T. Mewes, B. Hillebrands and R. L. Stamps: Induced fourfold anisotropy and bias in compensated NiFe/FeMn double layers. Phys. Rev. B 68, 184418 (2003).
    [79] F. Ernult, B. Dieny, L. Billard, F. Lançon and J. R. Regnard: Increase in ferromagnetic/antiferromagnetic exchange bias due to a reduction of the interfacial exchange interaction. J. Appl. Phys. 94, 6678 (2003).
    [80] Y. Ijiri, J. A. Borchers, R. W. Erwin, S. H. Lee, P. J. van der Zaag and R. M. Wolf: Perpendicular Coupling in Exchange-Biased Fe3O4/CoO Superlattice. Phys. Rev. Lett. 80, 608 (1998).
    [81] J. Nogués, D. Lederman, T. J. Moran, I. K. Schuller and K. V. Rao: Large exchange bias and its connection to interface structure in FeF2–Fe bilayers. Appl. Phys. Lett. 68, 3186 (1996).
    [82] J. Nogués, D. Lederman, T. J. Moran and . K. Schuller: Positive Exchange Bias in FeF2-Fe Bilayers. Phys. Rev. Lett. 76, 4624 (1996).
    [83] D. Suess, T. Schrefl, W. Scholz, J. V. Kim, R. L. Stamps and J. Fidler: Micromagnetic Simulation of Antiferromagnetic/Ferromagnetic Structures. IEEE Trans. Magn. 38, 2520 (2002).
    [84] T. C. Schulthess and W. H. Butler: Coupling mechanisms in exchange biased films. J. Appl. Phys. 85, 5510 (1999).
    [85] U. Nowak, K. D. Usadel, J. Keller, P. Miltényi, B. Beschoten and G. Güntherodt: Domain state model for exchange bias. I. Theory. Phys. Rev. B 66, 014430 (2002).
    [86] U. Nowak, A. Misra and K. D. Usadel: Domain state model for exchange bias. J. Appl. Phys. 89, 7269 (2001).
    [87] B. Beckmann, U. Nowak and K. D. Usadel: Asymmetric reversal modes in ferromagnetic/antiferromagnetic multilayers. Phys. Rev. Lett. 91, 187201 (2003).
    [88] G. Scholten, K. D. Usadel and U. Nowak: Coercivity and exchange bias of ferromagnetic/antiferromagnetic multilayers. Phys. Rev. B 71, 064413 (2005).
    [89] A. Misra, U. Nowak, and K. D. Usadel: Control of exchange bias by diluting the antiferromagnetic layer. J. Appl. Phys. 93, 6593 (2003).
    [90] A. Misra, U. Nowak and K. D. Usadel: Structure of domains in an exchange-bias model. J. Appl. Phys. 95, 1357 (2004).
    [91] B. Beckmann and K. D. Usadel: Cooling-field dependence of asymmetric reversal modes for ferromagetic/antiferromagnetic multilayers. Phys. Rev. B 74, 054431 (2006).
    [92] N. A. Usov and S. A. Gudoshnikov: Numerical simulation of magnetization process in antiferromagnetic-ferromagnetic bilayer with compensated interface. J. Magn. Magn. Mat. 300, 164 (2006).

    Chapter 4:
    [1] J. Haider, M. Rahman, M. S. J. Hashmi, and M. Sarwar: Investigating the wear characteristics of engineered surfaces; low-temperature plasma nitriding and TiN + MoSx hard-solid lubricant coating. J. Mater. Sci 43, 3368 (2008).
    [2] O. Kappertz, R. Drese, and M. Wuttig: Correlation between structure, stress and deposition parameters in direct current sputtered zinc oxide films. J. Vacu. Sci. & Techn. A: Vacuum, Surfaces, and Films. 20, 2084 (2002).
    [3] C. Salinga, H. Weis, and M. Wuttig: Gasochromic switching of tungsten oxide films - a correlation between film properties and coloration kinetics. Thin Solid Films. 414, 288 (2002).
    [4] K. H. J. Buschow and F. R. de Boer: Physics of Magnetism and Magnetic Materials. Kluwer Academic/Plenum Publishers, (2003).
    [5] VSM manual: 7400 series, Lake Shore Cryotronics. Inc. (2005).
    [6] S. Li, Z. Huang, J. G. Duh, and M. Yamaguchi: Ultrahigh-frequency ferromagnetic properties of FeCoHf films deposited by gradient sputtering. Appl. Phys. Lett. 92, 092501 (2008).
    [7] Y. T. Chen: The effect of interface texture on exchange biasing in Ni80Fe20/Ir20Mn80 system. Nanoscale Res. Lett. 4, 90 (2009).
    [8] R. L. Fagaly: Superconducting quantum interference device instruments and applications. Rev. Sci. Inst. 77, 101101 (2006).
    [9] C. D. Tesche, and J. Clarke: DC SQUID - noise and optimization. J. Low Temp. Phys. 29, 301 (1982).
    [10] R. P. Giffard, R. A. Webb, and J. C. Wheatley: Principles and methods of low-frequency electric and magnetic measurements using an rf-biased point-contact superconducting device. J. Low Temp. Phys. 6, 533 (1972).
    [11] J. Clarke and A. I. Braginski: The SQUID handbook – Vol. 1; Fundamentals and technology of SQUIDs and SQUID systems. Wiley, (2004).
    [12] J. E. Zimmerman, P. Thiene and J. T. Harding: Design and operation of stable RF-biased superconducting point-contact quantum devices, and a note on properties of perfectly clean metal contacts. J. Appl. Phys. 41, 1572 (1970).
    [13] M. Farle, T. Silva and G. Woltersdorf: Spin Dynamics in the Time and Frequency Domain; A chapter in Magnetic Nanostructure, Springer Tracts in Modern Physics, Vol. 246, pp.37-83 (2013).
    [14] W. K. Hiebert, L. Lagae, and J. De Boeck: Spatially resolved ultrafast precessional magnetization reversal. Phys. Rev. B 68, 020402R (2003).
    [15] A. B. Kos, T. J. Silva, and P. Kabos: Pulsed inductive microwave magnetometer. Rev. Sci. Instrum. 73, 3563 (2002).
    [16] T. J. Silva, C. S. Lee, T. M. Crawford, and C. T. Rogers: Inductive measurement of ultrafast magnetization dynamics in thin-film permalloy. J. Appl. Phys. 85, 7849 (1999).
    [17] S. S. Kalarickal, P. Krivosik, M. Wu, C. E. Patton, M. L. Schneider, P. Kabos, T. J. Silva, and J. P. Nibarger: Ferromagnetic resonance linewidth in metallic thin films: Comparison of measurement methods. J. Appl. Phys. 99, 093909 (2006).
    [18] P. Wolf: Free Oscillations of the magnetization in permalloy films. J. Appl. Phys. 32, S95 (1961).
    [19] C. E. Patton: Linewidth and relaxation processes for the main resonance in the spin-wave spectra of Ni–Fe alloy films. J. Appl. Phys. 39, 3060 (1968).
    [20] J. J. Green and T. Kohane: SCP and Solid State Technol. 7, 46 (1964).
    [21] I. Bady: Measurement of linewidth of single crystal ferrites by monitoring the reflected wave in short-circuited transmission line. IEEE Trans. Magn. 3, 521 (1967).
    [22] F. J. Cadieu, R. Rani, W. Mendoza, B. Peng, S. A. Shaheen, M. J. Hurben, and C. E. Patton: Static magnetic and microwave properties of Li-ferrite films prepared by pulsed laser deposition. J. Appl. Phys. 81, 4801 (1997).
    [23] M. Kostylev: Waveguide-based ferromagnetic resonance measurements of metallic ferromagnetic films in transmission and reflection. J. Appl. Phys. 113, 053908 (2013).
    [24] C. Bilzer, T. Devolder, P. Crozat, C. Chappert, S. Cardoso and P. P. Freitas: Vector network analyzer ferromagnetic resonance of thin films on coplanar waveguides - Comparison of different evaluation methods. J. Appl. Phys. 101, 074505 (2007).
    [25] D. S. Hung, Y. P. Fu, S. F. Lee, Y. D. Yao, and F. B. Abdul Ahad: Relaxation behaviors of the bismuth-substituted yttrium iron garnet in the microwave range. J. Appl. Phys. 107, 09A503 (2010).
    [26] F. B. Abdulahad , D. S. Hung , Y. C. Chiu , and S. F. Lee: Exchange Bias Effect on the Relaxation Behavior of the IrMn/NiFe Bilayer System. IEEE Trans. Magn., 47, 4227 (2011).
    [27] F. B. Abdulahad, D. S. Hung, and S. F. Lee: Temperature dependence of static and dynamic magnetic properties in NiFe/IrMn bilayer system. J. Mater. Res. 29, 1237 (2014).
    [28] W. Barry: A Broad-Band, Automated, Stripline Technique for the Simultaneous Measurement of Complex Permittivity and Permeability. IEEE Trans. Microwave Theory Tech. MTT-34, 80 (1986).
    [29] Agilent Technologies, Understanding the Fundamental Principles of Vector Network Analysis. Agilent AN 1287-1, Application Note.
    [30] J. Nogues, J. Sort, V. Langlais, V. Skumryev, S. Surinach, J. S. Munoz, and M. D. Baro: Exchange bias in nanostructures. Phys. Rep. 422, 65 (2005).

    Chapter 5:
    [1] M. Yang, J. J. Ge, X. B. Xue, Y. Yang, W. B. Rui, B. You, L. Sun, J. Du, and A. Hu: Tuning the exchange bias training effect in top- and bottom-pinning FeNi/FeMn bilayers. Phys. Stat. Sol. A 208, 2369 (2011).
    [2] V. K. Sankaranarayanan, S. M. Yoon, D. Y. Kim, C. O. Kim, and C. G. Kim: Exchange bias in NiFe/FeMn/Ni Fe trilayers. J. Appl. Phys. 96, 7428 (2004).
    [3] V. K. Sankaranarayanan, S. M. Yoon, C. G. Kim and C. O. Kim: Exchange bias variations of the seed and top NiFe layers in NiFe/FeMn/NiFe trilayer as a function of seed layer thickness. J. Magn. Magn. Mater. 286, 196 (2005).
    [4] K. Hoshino, R. Nakatani, H. Hoshiya, Y. Sugita and S. Tsunashima: Exchange Coupling between Antiferromagnetic Mn–Ir and Ferromagnetic Ni–Fe Layers. Jpn. J. Appl. Phys., Part 1 35, 607 (1996).
    [5] R. Nakatani, H. Hoshiya, K. Hoshino and Y. Sugita: Relationship between film structure and exchange coupling in Mn-Ir/Ni-Fe films. J. Magn. Magn. Mater. 173, 321 (1997).
    [6] Y. T. Chen: The effect of interface texture on exchange biasing in Ni80Fe20/Ir20Mn80 system. Nanoscale Res. Lett. 4, 90 (2009).
    [7] J. van Driel, F. R. de Boer, K. M. H. Lenssen and R. Coehoorn: Exchange biasing by Ir19Mn81 - Dependence on temperature, microstructure and antiferromagnetic layer thickness. J. Appl. Phys. 88, 975 (2000).
    [8] A. J. Devasahayam, P. J. Sides and M. H. Kryder: Magnetic, temperature, and corrosion properties of the NiFe/IrMn exchange couple. J. Appl. Phys. 83, 7216 (1998).
    [9] X. Y. Lang, W. T. Zhang and Q. Jiang: Dependence of the blocking temperature in exchange biased ferromagnetic/antiferromagnetic bilayers on the thickness of the antiferromagnetic layer. Nanotech. 18, 155701 (2007).
    [10] A. C. C. Yu, X. F. Han, J. Murai, Y. Ando, T. Miyazaki and K. Hiraga: Microstructural and magnetic characteristics of IrMn exchange-biased tunnel junctions. J. Magn. Magn. Mater. 240, 130 (2002).
    [11] D. Lacour, O. Durand, J. L. Maurice, H. Jaffrès, N. V. Dau, F. Petroff, P. Etienne, J. Humbert and A. Vaurès: On the use of exchange biased top electrodes in magnetic tunnel junctions. J. Magn. Magn. Mater. 270, 403 (2004).
    [12] L. H. Rui, R. T. Ling , Q. B. Jun, L. L. Tian, K. W. Jun and L. Wei: The optimization of Ta buffer layer in magnetron sputtering IrMn top spinvalve. Thin Solid Films 441, 111 (2003).
    [13] S. F. Cheng and P. Lubitz: Structural and magnetic studies of exchange bias films of Ir20Mn80. J. Appl. Phys. 87, 4927 (2000).
    [14] O. Acher, S. Queste, K.U. Barholz and R. Mattheis: High-frequency permeability of thin NiFe/IrMn layers. J. Appl. Phys. 93, 6668 (2003).
    [15] F. B. Abdulahad, D. S. Hung, Y. C. Chiu and S. F. Lee: Exchange bias effect on the relaxation behavior of the IrMn/NiFe bilayer system. IEEE Trans. Magn. 47, 4227 (2011).
    [16] F. B. Abdulahad, D. S. Hung and S. F. Lee: Temperature dependence of static and dynamic magnetic properties in NiFe/IrMn bilayer system. J. Mater. Res. 29, 1237 (2014).
    [17] T. Ambrose, R. L. Sommer, and C. L. Chien: Angular dependence of exchange coupling in ferromagnet/antiferromagnet bilayers. Phys. Rev. B 56, 83 (1997).
    [18] K. Zhang, T. Zhao and H. Fujiwara: Training effect in ferro(F)/ antiferromagnetic(AF) exchange coupled systems - Dependence on AF thickness. J. Appl. Phys. 91, 6902 (2002).
    [19] S. K. Mishra, F. Radu, H.A. Durr and W. Eberhardt: Training-induced positive exchange bias in NiFe/IrMn bilayers. Phys. Rev. Lett. 102, 177208 (2009).
    [20] H. Xi, and R. M White: Low-frequency dynamic hysteresis in exchange-coupled Ni81Fe19/Ir22Mn78 bilayers. Phys. Rev. B 64, 184416 (2001).
    [21] H. Xi and S. Franzen: Characterization and analysis of the training effect of exchange bias in coupled NiFe/IrMn bilayers. J Appl. Phys. 101, 09E513 (2007).
    [22] D. Paccard, C. Schlenker, O. Massenet, R. Montmory and A. Yelon: A New Property of Ferromagnetic-Antiferromagnetic Coupling. Phys. Stat. Sol. B 16, 301 (1966).
    [23] A. P. Malozemoff: Random-field model of exchange anisotropy at rough ferromagnetic-antiferromagnetic interfaces. Phys. Rev. B 35, 3679 (1987).
    [24] U. Nowak, A. Misra and K. D. Usadel: Modeling exchange bias microscopically. J. Magn. Magn. Mat. 240, 243 (2002).
    [25] Y. Li, J. H. Moon and K. J. Lee: Effect of interface roughness on exchange bias of an uncompensated interface - Montecarlo simulation. J. Magn. 16, 323 (2011).
    [26] A. Maitre, D. Ledue and R. Patte: Interfacial roughness and temperature effects on exchange bias properties in coupled ferromagnetic/antiferromagnetic bilayers. J. Magn. Magn. Mat. 324, 403 (2012).
    [27] J. Wang, T. Sannomiya, J. Shi and Y. Nakamura: Influence of interface roughness on the exchange bias of Co/CoO multilayers. J. Appl. Phys. 113, 17D707 (2013).
    [28] R. R. L. De Oliveira, D. A. C. Albuquerque, T. G. S. Cruz, F. M. Yamaji and F. L. Leite (2012). Measurement of the Nanoscale Roughness by Atomic Force Microscopy: Basic Principles and Applications, Atomic Force Microscopy - Imaging, Measuring and Manipulating Surfaces at the Atomic Scale, Dr. Victor Bellitto (Ed.), ISBN: 978-953-51-0414-8, InTech, DOI: 10.5772/37583.
    [29] E. S. Gadelmawla, M. M. Koura, T. M. A. Maksoud, I. M. Elewa and H. H. Soliman: Roughness Parameters. J. Mater. Proces. Tech. 123, 133 (2002).
    [30] N. N. Phuoc, H. Y. Chen and C. K. Ong: Effect of antiferromagnetic thickness on thermal stability of static and dynamic magnetization of NiFe/FeMn multilayers. J. Appl. Phys. 113, 063913 (2013).
    [31] J. Mathon and S. B. Ahmad: Quasi-two-dimensional behavior of the surface magnetization in a ferromagnet with softened surface exchange. Phys. Rev. B 37, 660 (1988).
    [32] C. Kittel: Introduction to Solid State Physics, 8th ed. (JohnWiley & Sons, New York, NY, 2005)
    [33] A. J. Freeman, C. L. Fu, S. Onishi and M. Weinert: In; Polarized Electrons in Surface Physics, Edited by R. Feder (World Scientific, Singapore, 1985), p.3.
    [34] F. Radu and H. Zabel: Exchange Bias Effect of Ferro-/Antiferromagnetic Heterostructures; Part of ‘Magnetic Heterostructures-Advances and Perspectives in Spinstructures and Spintransport’ Springer Tracts in Modern Physics, Vol. 227, pp. 97–184. Springer, Berlin-Heidelberg (2008).
    [35] J. V. Kim and R. L. Stamps: Hysteresis from antiferromagnet domain-wall processes in exchange-biased systems: Magnetic defects and thermal effects. Phys. Rev. B 71, 094405 (2005).
    [36] V. I. Nikitenko, V. S. Gornakov, A. J. Shapiro, R. D. Shull, K. Liu, S. M. Zhou and C. L. Chien: Asymmetry in Elementary Events of Magnetization Reversal in a Ferromagnetic/Antiferromagnetic Bilayer. Phys. Rev. Lett. 84, 765, (2000).
    [37] L. Wee, R. L. Stamps and R. E. Camley: Temperature dependence of domain-wall bias and coercivity. J. Appl. Phys. 89, 6913 (2001).
    [38] M. D. Stiles and R. D. McMichael: Coercivity in exchange-bias bilayers. Phys. Rev. B 63, 064405 (2001).
    [39] E. Fulcomer and S. H. Charap: Thermal fluctuation aftereffect model for some systems with ferromagnetic-antiferromagnetic coupling. J. Appl. Phys. 43, 4190 (1972).
    [40] C. Leighton, M. R. Fitzsimmons, A. Hoffmann, J. Dura, C. F. Majrkzak, M. S. Lund and I. K. Schuller: Thickness-dependent coercive mechanisms in exchange-biased bilayers. Phys. Rev. B 65, 064403 (2002).
    [41] M. Ali, C. H. Marrows, M. Al Jawad, B. J. Hickey, A. Misra, U. Nowak and K. D. Usadel: Antiferromagnetic layer thickness dependence of the IrMn/Co exchange-bias system. Phys. Rev. B 68, 214420 (2003).
    [42] M. D. Stiles and R. D. McMichael: Model for exchange bias in polycrystalline ferromagnet-antiferromagnet bilayers. Phys. Rev. B 59, 3722 (1999).
    [43] H. Xi, R. White and S. Rezende: Irreversible and reversible measurements of exchange anisotropy. Phys. Rev. B 60, 14837 (1999).
    [44] J. McCord, R. Kaltofen, T. Gemming, R. Hühne and L. Schultz: Aspects of static and dynamic magnetic anisotropy in Ni81Fe19-NiO films. Phys. Rev. B, 75, 134418 (2007).
    [45] J. McCord, R. Mattheis and D. Elefant: Dynamic magnetic anisotropy at the onset of exchange bias: The NiFe/IrMn ferromagnet/antiferromagnet. Phys. Rev. B 70, 094420 (2004).
    [46] N. P. Aley, G.V. Fernandez, R. Kroeger, B. Lafferty, J. Agnew, Y. Lu and K. O’Grady: Texture Effects in IrMn/CoFe Exchange Bias Systems. IEEE Trans. Magn. 44, 2820 (2008).
    [47] M. Ali, C.H. Marrows and B.J. Hickey: Onset of exchange bias in ultrathin antiferromagnetic layers. Phys. Rev. B 67, 172405 (2003).
    [48] A. N. Dobrynin, F. Maccherozzi, S. S. Dhesi, R. Fan, P, Bencok and P. Steadman: Antiferromagnetic exchange spring as the reason of exchange bias training effect. Appl. Phys. Lett. 105, 032407 (2014).
    [49] T. Ambrose and C. L. Chien: Dependence of exchange coupling on antiferromagnetic layer thickness in NiFe/CoO bilayers. J. Appl. Phys. 83, 6822 (1998).
    [50] B. Y. Wang, J. Y. Hong, K. H. O. Yang, Y. L. Chan, D. H. Wei, H. J. Lin and M. T. Lin: How antiferromagnetism drives the magnetization of a ferromagnetic thin film to align out of plane. Phys. Rev. Lett. 110, 117203 (2013).
    [51] B. Y. Wang, N. Y. Jih, W. C. Lin, C. H. Chuang, P. J. Hsu, C. W. Peng, Y. C. Yeh, Y. L. Chan, D. H. Wei, W. C. Chiang and M. T. Lin: Driving magnetization perpendicular by antiferromagnetic-ferromagnetic exchange coupling. Phys. Rev. B 83, 104417 (2011).
    [52] N. Y. Jih, B. Y. Wang, Y. L. Chan, D. H. Wei and M. T. Lin: Extending the Control of Antiferromagnetic–Ferromagnetic Exchange Coupling on Perpendicular Magnetization into the Soft Magnetic Regime. Appl. Phys. Expr. 5, 063008 (2012).

    Chapter 6:
    [1] J. Nogues, J. Sort, V. Langlais, V. Skumryev, S. Surinach, J. S. Munoz and M. D. Baro: Exchange bias in nanostructures. Phys. Rep. 422, 65 (2005).
    [2] J. McCord, R. Mattheis and D. Elefant: Dynamic magnetic anisotropy at the onset of exchange bias - The NiFe/IrMn ferromagnet/antiferromagnet. Phys. Rev. B, 70, 094420 (2004).
    [3] K. Steenbeck, R. Mattheis and M. Diegel: Antiferromagnetic energy loss and exchange coupling of IrMn/CoFe films - experiments and simulations. J. Mag. Mag. Mater. 279, 317 (2004).
    [4] J. McCord, R. Kaltofen, T. Gemming, R. Hühne and L. Schultz: Aspects of static and dynamic magnetic anisotropy in Ni81Fe19-NiO films. Phys. Rev. B, 75, 134418 (2007).
    [5] C. Kittel: Introduction to Solid State Physics, 8th ed. (John Wiley & Sons, New York, NY, 2005).
    [6] H. Y. Liu, Z. K. Wang, H. S. Lim, S. C. Ng, M. H. Kuok, D. J. Lockwood, M. G. Cottam, K. Nielsch and U. Gösele: Magnetic-field dependence of spin waves in ordered permalloy nanowire arrays in two dimensions. J. Appl. Phys. 98, 046103 (2005).
    [7] J. B. Youssef, V. Castel, N. Vukadinovic and M. Labrune: Spin-wave resonances in exchange-coupled Permalloy/garnet bilayers. J. Appl. Phys. 108, 063909 (2010).
    [8] A. A. Awad, A. Lara, V. Metlushko, K. Y. Guslienko and F. G. Aliev: Broadband probing magnetization dynamics of the coupled vortex state permalloy layers in nanopillars. Appl. Phys. Lett. 100, 262406 (2012).
    [9] M. Demand, A. E. Oropesa, S. Kenane, U. Ebels, I. Huynen and L. Piraux: Ferromagnetic resonance studies of nickel and permalloy nanowire arrays. J. Mag. Mag. Mater. 249, 228 (2002).
    [10] C. S. Lin, H. S. Lim, Z. K. Wang, S. C. Ng and M. H. Kuok: Band gap parameters of one-dimensional bicomponent nanostructured magnonic crystals. Appl. Phys. Lett. 98, 022504 (2011).
    [11] K. Fukumoto, W. Kuch, J. Vogel, J. Camarero, S. Pizzini, F. Offi, Y. Pennec, M. Bonfim, A. Fontaine and J. Kirschner: Mobility of domain wall motion in the permalloy layer of a spin-valve-like Fe20Ni80/Cu/Co trilayer. J. Mag. Mag. Mater. 293, 863 (2005).
    [12] H. Xi, J. Rantschler, S Mao, M. T. Kief and R. M. White: Interface coupling and magnetic properties of exchange-coupled Ni81Fe19/Ir22Mn78 bilayers. J. Phys. D: Appl. Phys. 36, 1464 (2003).
    [13] D. Tripathy, A. O. Adeyeye and N. Singh: Exchange bias in nanoscale antidot arrays. Appl. Phys. Lett. 93, 022502 (2008).
    [14] W. Stoecklein, S. S. P. Parkin and J. C. Scott: Ferromagnetic resonance studies of exchange-biased Permalloy thin films. Phys. Rev. B 38, 6847 (1988).
    [15] M. Ali, C. H. Marrows, M. Al-Jawad, B. J. Hickey, A. Misra, U. Nowak and K. D. Usadel: Antiferromagnetic layer thickness dependence of the IrMn/Co exchange-bias system. Phys. Rev. B 68, 214420 (2003).
    [16] M. D. Stiles and R.D. McMichael: Temperature dependence of exchange bias in polycrystalline ferromagnet-antiferromagnet bilayers. Phys. Rev. B 60, 12950 (1999).
    [17] G V. Fernandez, L. E. F. Outon and K. O’Grady: Antiferromagnetic grain volume effects in metallic polycrystalline exchange bias systems. J Phys. D: Appl. Phys. 41, 112001 (2008).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE