研究生: |
姜筑玲 Chiang, Chu-Ling |
---|---|
論文名稱: |
台灣地區母岩核種的特性之研究-以金門母岩為例 Adsorption Characteristic Of Nuclear Species in Taiwan Rock- a Case of Kinmen Rock |
指導教授: |
王竹方
Wang, Chu-Fang |
口試委員: |
蔣本基
Pen-Chi Chiang 張怡怡 E.E.Chang 譚駿嵩 Chung-Sung Tan 魏玉麟 Yu-Lin Wei |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 英文 |
論文頁數: | 92 |
中文關鍵詞: | 吸附 、花崗岩 、銫 、放射性核種 、安全評估 、核種遷移 |
外文關鍵詞: | Desorption, Granite, Cesium, Radionuclide, Safety assessment, nuclide transport |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
用過的核燃料仍然含有分裂產物,具有高放射性的狀態,所以我們需要妥善處理。目前在國際間最常使用[深層處置]的方式,盡可能的隔絕跟人類的接觸。使用深層處置可能需要長達十幾萬年或是更久的長期處置,讓高階放射性物質衰減到自然背景值。所以合理評估高階放射性最終處置場所釋放放射性核種的安全性是非常重要的。
我們必須要有能力去評估在這幾十萬年這麼長時間中在地質環境/處置母岩可能產生什麼改變,而這些改變對於核種遷移會造成什麼影響。在本研究中,針對金門區域54個樣品進行分析銫和硒吸附實驗。利用線性回歸計算,評估核種吸附親和力對於化學和礦物成份的關係。在這裡所研究的條件下,發現Cs、Se的吸附親合力有比較差的R-square,然而在Al2O3、Fe2O3、CaO、MgO有正相關性。
可能是因為花崗岩樣品中組成較複雜的關係。本研究也進一步把破碎裂帶的樣品區分出來,發現它的R-square有明顯的改善。這意味著那些次要kaolinite, smectite, illite, and zeolite礦物組成將明顯的控制核種的遷移。
為了量化吸附行為,利用合成層狀鈣鈦礦物K1+5yCa2Nb3-xO10並引進B-site的空缺進行建立表面錯合模型的模擬,透過Cs吸附實驗來進行面錯合模式邊界條件的設定。結果表明,Cs吸附到邊緣吸附位置的影響是可以忽略的,另一方面這些陽離子交換反應為最主要影響礦物的因素。藉由分析這些關係,更了解知道地質可能有哪些變化,對於核種的吸附行為的影響。
A reasonable estimate of the fate of released radionuclides is important in the aspect of safety assessment of spent fuel repository. In this study, experiments of Cs and Se adsorption to 54 different Kinmen area granite samples were conducted. The connection between nuclide uptake and chemical and mineral composition was evaluated by using linear regression. In the condition studied herein, the Cs、Se uptake, although poor R-square values appeared, is positively correlated to content of Al2O3、Fe2O3、CaO、MgO. Observed poor R-square values are likely the result of the complexity of granite samples. Further, when isolating results of those fracture zone samples out of others, the R-square values were greatly improved. This means that those secondary minerals such as kaolinite, smectite, illite, and zeolite will pronouncedly control the transport of nuclides.
To quantify the adsorption behaviors, the concept of surface complexation modeling was applied and the limitation of this technique was evaluated by fitting the experiments of Cs adsorption to synthesized layered perovskite K1+5yCa2Nb3-xO10minerals. Results showed that the effect of Cs adsorption to edge sorption sites could be negligible for these cation-exchange-reaction dominant minerals.
Chapter6 Reference
[1] C. Klein, C. S. Hurlbut, and J. D. Dana, Manual of mineralogy vol. 527: Wiley New York, 1993.
[2] J. M. Zachara, S. C. Smith, C. Liu, J. P. McKinley, R. J. Serne, and P. L. Gassman, "Sorption of Cs< sup>+</sup> to micaceous subsurface sediments from the Hanford site, USA," Geochimica et cosmochimica Acta, vol. 66, pp. 193-211, 2002.
[3] S. Topcuoǧlu, "Bioaccumulation of cesium-137 by biota in different aquatic environments," Chemosphere, vol. 44, pp. 691-695, 2001.
[4] S. Amir, M. Hafidi, G. Merlina, and J.-C. Revel, "Sequential extraction of heavy metals during composting of sewage sludge," Chemosphere, vol. 59, pp. 801-810, 2005.
[5] G. S. Bañuelos, Z.-Q. Lin, I. Arroyo, and N. Terry, "Selenium volatilization in vegetated agricultural drainage sediment from the San Luis Drain, Central California," Chemosphere, vol. 60, pp. 1203-1213, 2005.
[6] F. Chen, P. C Burns, and R. C. Ewing, "< sup> 79</sup> Se: geochemical and crystallo-chemical retardation mechanisms," Journal of nuclear materials, vol. 275, pp. 81-94, 1999.
[7] M. Fujita, M. Ike, R. Hashimoto, T. Nakagawa, K. Yamaguchi, and S. Soda, "Characterizing kinetics of transport and transformation of selenium in water–sediment microcosm free from selenium contamination using a simple mathematical model," Chemosphere, vol. 58, pp. 705-714, 2005.
[8] A. L. Foster, G. E. Brown Jr, and G. A. Parks, "X-ray absorption fine structure study of As (V) and Se (IV) sorption complexes on hydrous Mn oxides," Geochimica et Cosmochimica Acta, vol. 67, pp. 1937-1953, 2003.
[9] Y. Nakamaru, K. Tagami, and S. Uchida, "Distribution coefficient of selenium in Japanese agricultural soils," Chemosphere, vol. 58, pp. 1347-1354, 2005.
[10] C.-H. Wu, C.-Y. Kuo, C.-F. Lin, and S.-L. Lo, "Modeling competitive adsorption of molybdate, sulfate, selenate, and selenite using a Freundlich-type multi-component isotherm," Chemosphere, vol. 47, pp. 283-292, 2002.
[11] P. T. Zawislanski, S. M. Benson, R. TerBerg, and S. E. Borglin, "Selenium speciation, solubility, and mobility in land-disposed dredged sediments," Environmental science & technology, vol. 37, pp. 2415-2420, 2003.
[12] T.-H. Wang, C.-L. Chen, L.-Y. Ou, Y.-Y. Wei, F.-L. Chang, and S.-P. Teng, "Cs sorption to potential host rock of low-level radioactive waste repository in Taiwan: experiments and numerical fitting study," Journal of hazardous materials, vol. 192, pp. 1079-1087, 2011.
[13] F. G. Gibb, "High-temperature, very deep, geological disposal: a safer alternative for high-level radioactive waste?," Waste Management, vol. 19, pp. 207-211, 1999.
[14] Y. A. Kozlovsky, "The superdeep well of the Kola Peninsula," 1986.
[15] M. Chino, H. Nakayama, H. Nagai, H. Terada, G. Katata, and H. Yamazawa, "Preliminary estimation of release amounts of 131I and 137Cs accidentally discharged from the Fukushima Daiichi nuclear power plant into the atmosphere," Journal of nuclear science and technology, vol. 48, pp. 1129-1134, 2011.
[16] T.-H. Wang, M.-H. Li, Y.-Y. Wei, and S.-P. Teng, "Desorption of cesium from granite under various aqueous conditions," Applied Radiation and Isotopes, vol. 68, pp. 2140-2146, 2010.
[17] A. Ararem, O. Bouras, and F. Arbaoui, "Adsorption of caesium from aqueous solution on binary mixture of iron pillared layered montmorillonite and goethite," Chemical Engineering Journal, vol. 172, pp. 230-236, 2011.
[18] A. Bouzidi, F. Souahi, and S. Hanini, "Sorption behavior of cesium on Ain Oussera soil under different physicochemical conditions," Journal of hazardous materials, vol. 184, pp. 640-646, 2010.
[19] C.-L. Chen, T.-H. Wang, C.-H. Lee, and S.-P. Teng, "The development of a through-diffusion model with a parent–daughter decay chain," Journal of contaminant hydrology, vol. 138, pp. 1-14, 2012.
[20] T. Missana, A. Benedicto, M. García-Gutiérrez, and U. Alonso, "Modeling cesium retention onto Na-, K-and Ca-smectite: Effects of ionic strength, exchange and competing cations on the determination of selectivity coefficients," Geochimica et Cosmochimica Acta, vol. 128, pp. 266-277, 2014.
[21] H. Van Olphen, "Introduction to clay colloid chemistry," 1977.
[22] R. Pusch and R. N. Yong, Microstructure of smectite clays and engineering performance: CRC Press, 2006.
[23] B. Sawhiney, "Selective sorption and fixation of cations by clay minerals: a review," Clays Clay Miner, vol. 20, pp. 93-100, 1972.
[24] R. Cornell, "Adsorption of cesium on minerals: a review," Journal of Radioanalytical and Nuclear Chemistry, vol. 171, pp. 483-500, 1993.
[25] E. Brouwer, B. Baeyens, A. Maes, and A. Cremers, "Cesium and rubidium ion equilibriums in illite clay," The Journal of Physical Chemistry, vol. 87, pp. 1213-1219, 1983.
[26] A. Cremers, A. Elsen, P. D. Preter, and A. Maes, "Quantitative analysis of radiocaesium retention in soils," Nature, vol. 335, pp. 247-249, 09/15/print 1988.
[27] C. Poinssot, B. Baeyens, and M. H. Bradbury, "Experimental and modelling studies of caesium sorption on illite," Geochimica et cosmochimica Acta, vol. 63, pp. 3217-3227, 1999.
[28] M. H. Bradbury and B. Baeyens, "A generalised sorption model for the concentration dependent uptake of caesium by argillaceous rocks," Journal of Contaminant Hydrology, vol. 42, pp. 141-163, 2000.
[29] H. Gaudette, R. Grim, and C. Metzger, "ILLITE'A MODEL BASED ON THE SORPTION BEHAVIOR OF CESIUM," American Mineralogist, vol. 51, 1900.
[30] Y. Kim, R. T. Cygan, and R. J. Kirkpatrick, "< sup> 133</sup> Cs NMR and XPS investigation of cesium adsorbed on clay minerals and related phases," Geochimica et Cosmochimica Acta, vol. 60, pp. 1041-1052, 1996.
[31] Y. Kim, R. James Kirkpatrick, and R. T. Cygan, "< sup> 133</sup> Cs NMR study of cesium on the surfaces of kaolinite and illite," Geochimica et Cosmochimica Acta, vol. 60, pp. 4059-4074, 1996.
[32] T. Nakanishi, T. Matsunaga, J. Koarashi, and M. Atarashi-Andoh, "< sup> 137</sup> Cs vertical migration in a deciduous forest soil following the Fukushima Dai-ichi Nuclear Power Plant accident," Journal of environmental radioactivity, vol. 128, pp. 9-14, 2014.
[33] A. J. Fuller, S. Shaw, C. L. Peacock, D. Trivedi, J. S. Small, L. G. Abrahamsen, et al., "Ionic strength and pH dependent multi-site sorption of Cs onto a micaceous aquifer sediment," Applied Geochemistry, vol. 40, pp. 32-42, 2014.
[34] T. Sasaki, Y. Terakado, T. Kobayashi, I. Takagi, and H. Moriyama, "Analysis of sorption behavior of cesium ion on mineral components of granite," Journal of Nuclear Science and Technology, vol. 44, pp. 641-648, 2007.
[35] K. Sato, K. Fujimoto, W. Dai, and M. Hunger, "Molecular Mechanism of Heavily Adhesive Cs: Why Radioactive Cs is not Decontaminated from Soil," The Journal of Physical Chemistry C, vol. 117, pp. 14075-14080, 2013.
[36] T. Ohnuki and N. Kozai, "Adsorption behavior of radioactive cesium by non-mica minerals," Journal of Nuclear Science and Technology, vol. 50, pp. 369-375, 2013.
[37] R. Cortés-Martínez, M. Olguín, and M. Solache-Ríos, "Cesium sorption by clinoptilolite-rich tuffs in batch and fixed-bed systems," Desalination, vol. 258, pp. 164-170, 2010.
[38] A. Nakao, S. Funakawa, A. Takeda, H. Tsukada, and T. Kosaki, "The distribution coefficient for cesium in different clay fractions in soils developed from granite and Paleozoic shales in Japan," Soil Science and Plant Nutrition, vol. 58, pp. 397-403, 2012.
[39] A. Kitamura, T. Yamamoto, H. Moriyama, and S. Nishikawa, "Analysis of adsorption behavior of cesium onto quartz using electrical double layer model," Journal of Nuclear Science and Technology, vol. 33, pp. 840-845, 1996.
[40] C. Koretsky, "The significance of surface complexation reactions in hydrologic systems: a geochemist's perspective," Journal of Hydrology, vol. 230, pp. 127-171, 2000.
[41] S.-C. Tsai, T.-H. Wang, M.-H. Li, Y.-Y. Wei, and S.-P. Teng, "Cesium adsorption and distribution onto crushed granite under different physicochemical conditions," Journal of hazardous materials, vol. 161, pp. 854-861, 2009.
[42] F. Grant, "The geological significance of variations in the abundances of the isotopes of silicon in rocks," Geochimica et Cosmochimica Acta, vol. 5, pp. 225-242, 1954.
[43] I. Kushiro, "Si-Al relation in clinopyroxenes from igneous rocks," American journal of science, vol. 258, pp. 548-554, 1960.
[44] J. F. McCarthy and J. M. Zachara, "Subsurface transport of contaminants," Environmental Science & Technology, vol. 23, pp. 496-502, 1989.
[45] D. W. Evans, J. J. Alberts, and R. A. Clark III, "Reversible ion-exchange fixation of cesium-137 leading to mobilization from reservoir sediments," Geochimica et Cosmochimica Acta, vol. 47, pp. 1041-1049, 1983.
[46] S. F. Foley, M. G. Barth, and G. A. Jenner, "Rutile/melt partition coefficients for trace elements and an assessment of the influence of rutile on the trace element characteristics of subduction zone magmas," Geochimica et Cosmochimica Acta, vol. 64, pp. 933-938, 2000.
[47] Y. Kumagai, A. Kimura, M. Taguchi, R. Nagaishi, I. Yamagishi, and T. Kimura, "Hydrogen production in gamma radiolysis of the mixture of mordenite and seawater: Fukushima NPP Accident Related," Journal of Nuclear Science and Technology, vol. 50, pp. 130-138, 2013.
[48] B. M. Thomson, C. L. Smith, R. D. Busch, M. D. Siegel, and C. Baldwin, "Removal of metals and radionuclides using apatite and other natural sorbents," Journal of environmental engineering, vol. 129, pp. 492-499, 2003.
[49] A. Paasikallio, "Effect of biotite, zeolite, heavy clay, bentonite and apatite on the uptake of radiocesium by grass from peat soil," Plant and soil, vol. 206, pp. 213-222, 1999.
[50] B. Torstenfelt, K. Andersson, and B. Allard, "Sorption of strontium and cesium on rocks and minerals," Chemical geology, vol. 36, pp. 123-137, 1982.
[51] A. Bauer, B. Velde, and G. Berger, "Kaolinite transformation in high molar KOH solutions," Applied Geochemistry, vol. 13, pp. 619-629, 1998.
[52] G. Mahood and W. Hildreth, "Large partition coefficients for trace elements in high-silica rhyolites," Geochimica et Cosmochimica Acta, vol. 47, pp. 11-30, 1983.
[53] K. G. Stollenwerk, "Geochemical processes controlling transport of arsenic in groundwater: a review of adsorption," in Arsenic in ground water, ed: Springer, 2003, pp. 67-100.
[54] S. Uma, A. R. Raju, and J. Gopalakrishnan, "Bridging the Ruddlesden–Popper and the Dion–Jacobson series of layered perovskites: synthesis of layered oxides, A2–xLa2Ti3–xNbxO10 (A= K, Rb), exhibiting ion exchange," J. Mater. Chem., vol. 3, pp. 709-713, 1993.
[55] S. Bhowmick, J. Basu, Y. Xue, and C. B. Carter, "Hydrothermal synthesis of nanocrystalline barium cerate using hexamethylenetetramine," Journal of the American Ceramic Society, vol. 93, pp. 4041-4046, 2010.
[56] K. Maeda, M. Eguchi, W. J. Youngblood, and T. E. Mallouk, "Calcium niobate nanosheets prepared by the polymerized complex method as catalytic materials for photochemical hydrogen evolution," Chemistry of Materials, vol. 21, pp. 3611-3617, 2009.
[57] K. Maeda and T. E. Mallouk, "Comparison of two-and three-layer restacked Dion–Jacobson phase niobate nanosheets as catalysts for photochemical hydrogen evolution," Journal of Materials Chemistry, vol. 19, pp. 4813-4818, 2009.
[58] H. Hata, Y. Kobayashi, V. Bojan, W. J. Youngblood, and T. E. Mallouk, "Direct deposition of trivalent rhodium hydroxide nanoparticles onto a semiconducting layered calcium niobate for photocatalytic hydrogen evolution," Nano letters, vol. 8, pp. 794-799, 2008.
[59] J. C. Pérez-Flores, D. Pérez-Coll, S. García-Martín, C. Ritter, G. C. Mather, J. s. Canales-Vázquez, et al., "A-and B-Site Ordering in the A-Cation-Deficient Perovskite Series La2–x NiTiO6− δ (0≤ x< 0.20) and Evaluation as Potential Cathodes for Solid Oxide Fuel Cells," Chemistry of Materials, vol. 25, pp. 2484-2494, 2013.
[60] K. Shimizu, A. Lasia, and J.-F. o. Boily, "Electrochemical impedance study of the hematite/water interface," Langmuir, vol. 28, pp. 7914-7920, 2012.
[61] A. P. dos Santos, A. Diehl, and Y. Levin, "Surface tensions, surface potentials, and the Hofmeister series of electrolyte solutions," Langmuir, vol. 26, pp. 10778-10783, 2010.
[62] T. Wang, M.-C. Huang, Y.-K. Hsieh, W.-S. Chang, J.-C. Lin, C.-H. Lee, et al., "Influence of sodium halides (NaF, NaCl, NaBr, NaI) on the photocatalytic performance of hydrothermally synthesized hematite photoanodes," ACS applied materials & interfaces, vol. 5, pp. 7937-7949, 2013.
[63] W. D. Schecher and D. C. McAvoy, MINEQL+: a chemical equilibrium modeling system; Version 4.5 for Windows workbook: Environmental Research Software, 2001.
[64] D. A. Dzombak, Surface complexation modeling: hydrous ferric oxide: John Wiley & Sons, 1990.
[65] W. D. Schecher and D. C. McAvoy, "MINEQL+: a software environment for chemical equilibrium modeling," Computers, Environment and Urban Systems, vol. 16, pp. 65-76, 1992.
[66] A. Clearfield, "Ion-exchange materials: Seizing the caesium," Nature chemistry, vol. 2, pp. 161-162, 2010.