簡易檢索 / 詳目顯示

研究生: 蔡琇雲
Tsai, Hsiu-Yun
論文名稱: 微液滴形成與篩選應用於細胞之研究
Cell Encapsulated in Medium-in-Oil Microdroplets and Sorting by Using a Polydimethylsiloxane Microfluidic Device
指導教授: 饒達仁
Yao, Da-Jeng
口試委員: 李昇憲
Sheng-Shian Li
王玉麟
Yu-Lin Wang
學位類別: 碩士
Master
系所名稱: 工學院 - 生物醫學工程研究所
Institute of Biomedical Engineering
論文出版年: 2014
畢業學年度: 103
語文別: 中文
論文頁數: 88
中文關鍵詞: 微流體晶片均一粒徑液滴生殖細胞氣動閥細胞篩選
外文關鍵詞: microfludic chip, uniform micro-droplets, germ cell, air valve, cell sorting
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究創建一個簡單的整合乳化液滴生成與液滴篩選之微流道平台,應用於體外生殖技術。微流體晶片主要分成四個部分:(1)微液滴生成且分離生殖細胞(2)篩選區(3)儲存區(4)廢液區。
    研究上分三個步驟。第一階段設計乳化液滴生成結構並提高檢體分離率,透過微量注射式幫浦(syringe pump)調控兩種不相溶的流體間的體積流率比,在油浴流道中生成均一粒徑乳化液滴 (Water-in-oil droplets, W/O)。本研究成功利用三入一出結構晶片,藉由流體聚焦生成可控制粒徑的乳化液滴,同時使用聚苯乙烯球(PS bead)模擬卵母細胞在流道入口的動態情況,並改以在出口端使用拉力驅動模式(Push-pull)大幅增加PS beads進入流道內的數量且大幅減少生殖細胞的損耗。
    第二階段設計液滴儲存區,使用界面活性劑增加液滴穩定效果與進行細胞毒性測試。第三階段整合氣動閥控制微流道的開關,成功分離細胞於成長所需培養液內,形成乳化液滴,將其儲存於螺旋結構儲存區。以利生殖細胞操作與培養,具有製作簡單、操控便利、降低細胞培養成本、防止汙染風險、生物相容性等優點。並於活體顯微鏡上操作與觀測,以達到Lab-on-a-chip的目標。


    The study created a simple microfluidic platform that uses with in-vitro fertilization (IVF). It has four parts including: (1) Microdroplets generation and cell separation, (2) Sorting area, (3) Storage area, and (4) Waste area. In this study, it is divided into three steps as follow.
    First, the polydimethylsiloxane (PDMS) flow-focusing microfluidic device was used for micrometer-size medium-in-oil microdroplets generation. The volume of microdroplets can be controlled by adjusting the flow rates of both oil and medium solutions. The microdroplets formation by "push-pull" system significantly reduces the loss of embryos, and micro-pneumatic valve to control the flow channel switching and also successfully isolated microdroplets with embryo cells to the storage area.
    The second step, storage area be design, then mono-dispersed microdroplets keep the stability by detergent and also to test for the detergent toxicity. The third step, the air valve was control sorting cell encapsulation into the storage area. It reduces medium volumes, cell culture cost, evaporation problem and prevents contamination risk. This droplet-based microfluidics system provides a dynamic and non-continuous culture condition for mimicking the in vivo cell development IVF research.

    第一章 緒論 1 1.1 前言與研究背景 1 1.2 微流體應用於體外受精 2 1.3 體外授精背景與源起 4 1.4 體外授精技術風險 5 第二章 文獻回顧 8 2.1 微液滴在微流體中之形成方式及發展 8 2.1.1 流體聚焦流道 8 2.1.2 檢體分離 11 2.1.3 動態分離方式 12 2.2 研究目標 14 第三章 實驗材料與設備 16 3.1 實驗材料 16 3.1.1 實驗使用流體 16 3.1.2 聚苯乙烯球(polystyrene Beads) 17 3.1.2 實驗動物之材料 17 3.2 實驗設備介紹 20 3.2.1 微量注射幫浦儀器 20 3.2.2 二氧化碳培養箱(CO2 Incubator) 21 3.2.3 即時觀測系統 21 3.2.4 黏滯係數量測系統 23 第四章 實驗步驟與方法 24 4.1 實驗架構 24 4.2 乳化液滴生成理論 25 4.3 薄膜運動 28 4.4 微流道晶片設計概念 29 4.4.1 微液滴生成結構設計(T字型、三入ㄧ出) 29 4.4.2 結合篩選裝置與儲存區設計 31 4.5 晶片製程 33 4.5.1. PDMS微流道晶片的製作 40 4.5.2. 氧電漿接合 43 4.6 乳化液滴生成平台 44 4.6.1 單一生殖細胞包覆於乳化液滴 45 4.7 乳化液滴生成與篩選裝置平台 46 4.7.1 氣動閥篩選微液滴 46 第五章 液珠分離實驗結果 48 5.1 乳化液滴生成 48 5.1.1 二入一出之T型晶片 48 5.1.2 三入一出流道晶片 49 5.2 最佳化流速控制穩定的液滴 50 5.2.1 控制分散相的體積流量 50 5.2.2 培養液含卵母細胞的體積 51 5.3 分離檢體液珠排列 52 5.4 改變驅動方式以增加檢體進入流道 54 5.4.1 利用Push-push驅動模式控制 54 5.4.2 利用Push-pull驅動模式控制 56 5.4.3 Push-pull流道內分離檢體 57 5.4.4 卵母細胞進入流道比例 60 5.5 維持液珠穩定 61 5.5.1 使用界面活性劑 63 5.5.2 細胞培養 66 第六章 液珠儲存與篩選 70 6.1 整合微流道篩選機制 70 6.2 問題與討論 73 6.2.1 疏水層塗佈問題 73 6.2.2 受精卵細胞培養 73 第七章 結論與未來展望 77 7.1 結論 77 7.2 未來展望 78 第八章 參考文獻 80

    1. Edgar JS, Milne G, Zhao Y, Pabbati CP, Lim DS, Chiu DT. Compartmentalization of chemically separated components into droplets. Angew Chem Int Ed Engl 2009;48(15):2719-22.
    2. Tang KT, Yao DJ, Yang CM, Hao HC, Chao JS, Li CH, Gu PS. A Portable Electronic Nose Based on Bio-Chemical Surface Acoustic Wave (SAW) Array with Multiplexed Oscillator and Readout Electronics. In: Pardo M, Sberveglieri G, editors. Olfaction and Electronic Nose, Proceedings. Volume 1137, AIP Conference Proceedings2009;86-89.
    3. Ku PH, Hsiao CY, Chen MJ, Lin TH, Li YT, Liu SC, Tang KT, Yao DJ, Yang CM. Polymer/Ordered Mesoporous Carbon Nanocomposite Platelets as Superior Sensing Materials for Gas Detection with Surface Acoustic Wave Devices. Langmuir 2012;28(31):11639-11645.
    4. Li L, Ismagilov RF. Protein crystallization using microfluidic technologies based on valves, droplets, and SlipChip. Annu Rev Biophys 2010;39:139-58.
    5. Shen HH, Su TY, Liu YJ, Yao DJ. SNP detection based on a temperature –controllable EWOD digital microfluidic system. Sensors and Materials 2013.
    6. Chung YC, Jan MS, Lin YC, Lin JH, Cheng WC, Fan CY. Microfluidic chip for high efficiency DNA extraction. Lab on a Chip 2004;4(2):141-147.
    7. Zhang Y, Park S, Yang S, Wang TH. An all-in-one microfluidic device for parallel DNA extraction and gene analysis. Biomed Microdevices 2010;12(6):1043-9.
    8. Kumaresan P, Yang CJ, Cronier SA, Blazej RG, Mathies RA. High-Throughput Single Copy DNA Amplification and Cell Analysis in Engineered Nanoliter Droplets. Analytical Chemistry 2008;80(10):3522-3529.
    9. Clausell-Tormos J, Lieber D, Baret JC, El-Harrak A, Miller OJ, Frenz L, Blouwolff J, Humphry KJ, Koster S, Duan H and others. Droplet-based microfluidic platforms for the encapsulation and screening of Mammalian cells and multicellular organisms. Chem Biol 2008;15(5):427-37.
    10. Chen CL, Chen KC, Pan YC, Lee TP, Hsiung LC, Lin CM, Chen CY, Lin CH, Chiang BL, Wo AM. Separation and detection of rare cells in a microfluidic disk via negative selection. Lab Chip 2011;11(3):474-83.
    11. Takagi J, Yamada M, Yasuda M, Seki M. Continuous particle separation in a microchannel having asymmetrically arranged multiple branches. Lab Chip 2005;5(7):778-84.
    12. Huang HY, Wu TL, Huang HR, Li CJ, Fu HT, Soong YK, Lee MY, Yao DJ. Isolation of Motile Spermatozoa with a Microfluidic Chip Having a Surface-Modified Microchannel. Journal of Laboratory Automation 2013.
    13. Hui-Ting F, Da-Jeng Y, Hung-Ju H, Chin-Jung L, Hong-Yuan H. Laminar stream-based microfluidic chip with high efficiency for human sperm motility sorting. 2010 5-9 Dec. 2010. p 72-75.
    14. Ziaie B, Baldi A, Lei M, Gu Y, Siegel RA. Hard and soft micromachining for BioMEMS: review of techniques and examples of applications in microfluidics and drug delivery. Advanced Drug Delivery Reviews 2004;56(2):145-172.
    15. Seemann R, Brinkmann M, Pfohl T, Herminghaus S. Droplet based microfluidics. Rep Prog Phys 2012;75(1):016601.
    16. Tran TM, Lan F, Thompson CS, Abate AR. From tubes to drops: droplet-based microfluidics for ultrahigh-throughput biology. Journal of Physics D-Applied Physics 2013;46(11):114004.
    17. Chen YT, Chang WC, Fang WF, Ting SC, Yao DJ, Yang JT. Fission and fusion of droplets in a 3-D crossing microstructure. Microfluidics and Nanofluidics 2012;13(2):239-247.
    18. El Debs B, Utharala R, Balyasnikova IV, Griffiths AD, Merten CA. Functional single-cell hybridoma screening using droplet-based microfluidics. Proceedings of the National Academy of Sciences of the United States of America 2012;109(29):11570-11575.
    19. Najah M, Griffiths AD, Ryckelynck M. Teaching Single-Cell Digital Analysis Using Droplet-Based Microfluidics. Analytical Chemistry 2012;84(3):1202-1209.
    20. Mazutis L, Gilbert J, Ung WL, Weitz DA, Griffiths AD, Heyman JA. Single-cell analysis and sorting using droplet-based microfluidics. Nature Protocols 2013;8(5):870-891.
    21. Garstecki P, Fuerstman MJ, Stone HA, Whitesides GM. Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up. Lab on a Chip 2006;6(3):437-446.
    22. Nie Z, Seo M, Xu S, Lewis P, Mok M, Kumacheva E, Whitesides G, Garstecki P, Stone H. Emulsification in a microfluidic flow-focusing device: effect of the viscosities of the liquids. Microfluidics and Nanofluidics 2008;5(5):585-594.
    23. Mulligan M, Rothstein J. Scale-up and control of droplet production in coupled microfluidic flow-focusing geometries. Microfluidics and Nanofluidics 2012;13(1):65-73.
    24. Perro A, Nicolet Cl, Angly J, Lecommandoux Sb, Le Meins J-Fo, Colin A. Mastering a Double Emulsion in a Simple Co-Flow Microfluidic to Generate Complex Polymersomes. Langmuir 2010;27(14):9034-9042.
    25. Swain JE, Lai D, Takayama S, Smith GD. Thinking big by thinking small: application of microfluidic technology to improve ART. Lab on a Chip 2013;13(7):1213-1224.
    26. Lopez-Garcia MDC, Monson RL, Haubert K, Wheeler MB, Beebe DJ. Sperm motion in a microfluidic fertilization device. Biomedical Microdevices 2008;10(5):709-718.
    27. Thornhill AR. ESHRE PGD Consortium 'Best practice guidelines for clinical preimplantation genetic diagnosis (PGD) and preimplantation genetic screening (PGS)'. Human Reproduction 2004;20(1):35-48.
    28. Akagi S, Hosoe M, Matsukawa K, Ichikawa A, Tanikawa T, Takahashi S. Culture of Bovine Embryos on a Polydimethylsiloxane (PDMS) Microwell Plate. Journal of Reproduction and Development 2010;56(4):475-479.
    29. Ma R, Xie L, Han C, Su K, Qiu T, Wang L, Huang G, Xing W, Qiao J, Wang J and others. In Vitro Fertilization on a Single-Oocyte Positioning System Integrated with Motile Sperm Selection and Early Embryo Development. Analytical Chemistry 2011;83(8):2964-2970.
    30. Heo YS, Cabrera LM, Bormann CL, Shah CT, Takayama S, Smith GD. Dynamic microfunnel culture enhances mouse embryo development and pregnancy rates. Human Reproduction 2010;25(3):613-622.
    31. Swain JE, Smith GD. Advances in embryo culture platforms: novel approaches to improve preimplantation embryo development through modifications of the microenvironment. Human Reproduction Update 2011;17(4):541-557.
    32. Smith GD, Takayama S, Swain JE. Rethinking In Vitro Embryo Culture: New Developments in Culture Platforms and Potential to Improve Assisted Reproductive Technologies. Biology of Reproduction 2011;86(3):62-62.
    33. Howards SS. Treatment of Male Infertility. New England Journal of Medicine 1995;332(5):312-317.
    34. Powell K. Fertility treatments: Seeds of doubt. Nature 2003;422(6933):656-658.
    35. 史帕, 劉怡伶, Spar DL. 造人 : 生育科技的商業運作方式. 臺北市: 商周出版 城邦文化發行; 2006. 338.
    36. Williams C, Sutcliffe A. Infant outcomes of assisted reproduction. Early Human Development 2009;85(11):673-677.
    37. Sutcliffe AG, Ludwig M. Outcome of assisted reproduction. The Lancet 2007;370(9584):351-359.
    38. Basatemur E, Shevlin M, Sutcliffe A. Growth of children conceived by IVF and ICSI up to 12 years of age. Reproductive BioMedicine Online 2010;20(1):144-149.
    39. Davies MJ, Moore VM, Willson KJ, Van Essen P, Priest K, Scott H, Haan EA, Chan A. Reproductive Technologies and the Risk of Birth Defects. New England Journal of Medicine 2012;366(19):1803-1813.
    40. Han C, Zhang Q, Ma R, Xie L, Qiu T, Wang L, Mitchelson K, Wang J, Huang G, Qiao J and others. Integration of single oocyte trapping, in vitrofertilization and embryo culture in a microwell-structured microfluidic device. Lab on a Chip 2010;10(21):2848-2854.
    41. Yang F, Chen Z, Pan J, Li X, Feng J, Yang H. An integrated microfluidic array system for evaluating toxicity and teratogenicity of drugs on embryonic zebrafish developmental dynamics. Biomicrofluidics 2011;5(2):-.
    42. Cho SK, Moon H, Chang-Jin K. Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits. Microelectromechanical Systems, Journal of 2003;12(1):70-80.
    43. Sugiura S, Nakajima M, Tong J, Nabetani H, Seki M. Preparation of Monodispersed Solid Lipid Microspheres Using a Microchannel Emulsification Technique. Journal of Colloid and Interface Science 2000;227(1):95-103.
    44. Tan YC, Cristini V, Lee AP. Monodispersed microfluidic droplet generation by shear focusing microfluidic device. Sensors and Actuators B-Chemical 2006;114(1):350-356.
    45. Abismaı̈l B, Canselier JP, Wilhelm AM, Delmas H, Gourdon C. Emulsification by ultrasound: drop size distribution and stability. Ultrasonics Sonochemistry 1999;6(1–2):75-83.
    46. Christopher GF, Anna SL. Microfluidic methods for generating continuous droplet streams. Journal of Physics D: Applied Physics 2007;40(19):R319-R336.
    47. Anna SL, Bontoux N, Stone HA. Formation of dispersions using "flow focusing" in microchannels. Applied Physics Letters 2003;82(3):364-366.
    48. Hung LH, Choi KM, Tseng WY, Tan YC, Shea KJ, Lee AP. Alternating droplet generation and controlled dynamic droplet fusion in microfluidic device for CdS nanoparticle synthesis. Lab on a Chip 2006;6(2):174-178.
    49. Vignali DAA. Multiplexed particle-based flow cytometric assays. Journal of Immunological Methods 2000;243(1-2):243-255.
    50. Huang Y, Joo S, Duhon M, Heller M, Wallace B, Xu X. Dielectrophoretic Cell Separation and Gene Expression Profiling on Microelectronic Chip Arrays. Analytical Chemistry 2002;74(14):3362-3371.
    51. Lin W-Y, Lin Y-H, Lee G-B. Separation of micro-particles utilizing spatial difference of optically induced dielectrophoretic forces. Microfluidics and Nanofluidics 2009;8(2):217-229.
    52. Rong R, Choi J-W, Ahn CH. An on-chip magnetic bead separator for biocell sorting. Journal of Micromechanics and Microengineering 2006;16(12):2783-2790.
    53. Adams JD, Kim U, Soh HT. Multitarget magnetic activated cell sorter. Proceedings of the National Academy of Sciences 2008;105(47):18165-18170.
    54. Estes MD, Do J, Ahn CH. On chip cell separator using magnetic bead-based enrichment and depletion of various surface markers. Biomedical Microdevices 2008;11(2):509-515.
    55. Chen F, Zhan Y, Geng T, Lian H, Xu P, Lu C. Chemical Transfection of Cells in Picoliter Aqueous Droplets in Fluorocarbon Oil. Analytical Chemistry 2011;83(22):8816-8820.
    56. Kemna EWM, Schoeman RM, Wolbers F, Vermes I, Weitz DA, van den Berg A. High-yield cell ordering and deterministic cell-in-droplet encapsulation using Dean flow in a curved microchannel. Lab on a Chip 2012;12(16):2881.
    57. Kuntaegowdanahalli SS, Bhagat AAS, Kumar G, Papautsky I. Inertial microfluidics for continuous particle separation in spiral microchannels. Lab on a Chip 2009;9(20):2973.
    58. Takagi J, Yamada M, Yasuda M, Seki M. Continuous particle separation in a microchannel having asymmetrically arranged multiple branches. Lab on a Chip 2005;5(7):778-784.
    59. Yang S-Y, Hsiung S-K, Hung Y-C, Chang C-M, Liao T-L, Lee G-B. A cell counting/sorting system incorporated with a microfabricated flow cytometer chip. Measurement Science and Technology 2006;17(7):2001-2009.
    60. Melin J, Lee A, Foygel K, Leong DE, Quake SR, Yao MW. In vitro embryo culture in defined, sub-microliter volumes. Dev Dyn 2009;238(4):950-5.
    61. Wu HW, Huang YC, Wu CL, Lee GB. Exploitation of a microfluidic device capable of generating size-tunable droplets for gene delivery. Microfluidics and Nanofluidics 2009;7(1):45-56.
    62. Miller E, Rotea M, Rothstein JP. Microfluidic device incorporating closed loop feedback control for uniform and tunable production of micro-droplets. Lab on a Chip 2010;10(10):1293.
    63. 葉家顯. 利用微流道晶片生成均一粒徑乳化球並應用於光交聯微粒子之製備. 國立成功大學工程科學研究所碩士論文 2007.
    64. Miller E, Rotea M, Rothstein JP. Microfluidic device incorporating closed loop feedback control for uniform and tunable production of micro-droplets. Lab on a Chip 2010;10(10):1293-1301.
    65. He LH, Lim CW, Wu BS. A continuum model for size-dependent deformation of elastic films of nano-scale thickness. International Journal of Solids and Structures 2004;41(3-4):847-857.
    66. 王志豪. 整合氣動式微閥門與微幫浦之多功能生醫微流體檢測晶片及其疾病偵測之應用. 國立成功大學工程科學研究所碩士論文 2004.
    67. Lisensky GC, Campbell DJ, Beckman KJ, Calderon CE, Doolan PW, Rebecca MO, Ellis AB. Replication and Compression of Surface Structures with Polydimethylsiloxane Elastomer. Journal of Chemical Education 1999;76(4):537.
    68. Slentz BE, Penner NA, Regnier FE. Capillary electrochromatography of peptides on microfabricated poly(dimethylsiloxane) chips modified by cerium(IV)-catalyzed polymerization. Journal of Chromatography A 2002;948(1-2):225-233.
    69. Edd JF, Di Carlo D, Humphry KJ, Köster S, Irimia D, Weitz DA, Toner M. Controlled encapsulation of single-cells into monodisperse picolitre drops. Lab on a Chip 2008;8(8):1262.
    70. Clausell-Tormos J, Lieber D, Baret J-C, El-Harrak A, Miller OJ, Frenz L, Blouwolff J, Humphry KJ, Köster S, Duan H. Droplet-Based Microfluidic Platforms for the Encapsulation and Screening of Mammalian Cells and Multicellular Organisms. Chemistry & Biology 2008;15(5):427-437.
    71. Chen IJ, Lindner E. The Stability of Radio-Frequency Plasma-Treated Polydimethylsiloxane Surfaces. Langmuir 2007;23(6):3118-3122.
    72. Gandolfi F. Autocrine, paracrine and environmental factors influencing embryonic development from zygote to blastocyst. Theriogenology 1994;41(1):95-100.
    73. Lee C-Y, Lin Y-H, Lee G-B. A droplet-based microfluidic system capable of droplet formation and manipulation. Microfluidics and Nanofluidics 2008;6(5):599-610.
    74. VerMilyea MD. Oil for Embryo Culture: Mouse Embryo Assay is the Ultimate Test for Toxicity. 2012.
    75. Gregory T.Erbach PB, Jay M.Baltz and John D.Biggers. Zinc is a possible toxic contaminant of silicone oil in microdrop cultures of preimplantation mouse embryos. Human Reproduction 1995;10(12):6.
    76. Unger MA. Monolithic Microfabricated Valves and Pumps by Multilayer Soft Lithography. Science 2000;288(5463):113-116.
    77. Bringer MR, Gerdts CJ, Song H, Tice JD, Ismagilov RF. Microfluidic systems for chemical kinetics that rely on chaotic mixing in droplets. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2004;362(1818):1087-1104.
    78. Tasoglu S, Safaee H, Zhang X, Kingsley JL, Catalano PN, Gurkan UA, Nureddin A, Kayaalp E, Anchan RM, Maas RL and others. Exhaustion of Racing Sperm in Nature-Mimicking Microfluidic Channels During Sorting. Small 2013;9(20):3374-3384.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE