簡易檢索 / 詳目顯示

研究生: 黃珮雯
Pei-Wen Huang
論文名稱: 結合微影技術與微波加熱法在製作銀奈米材料選區成長之研究
The Research of Combination Optical Lithography Technology and Microwave Rapid Strategy for the Selective Area Growth of Silver Nanomaterials
指導教授: 朱鐵吉
Tieh-Chi Chu
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 108
中文關鍵詞: 銀奈米材料微影技術微波快速加熱選區成長
外文關鍵詞: silver nanomaterials, optical lithography, microwave rapid strategy, selecive area growth
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 奈米材料的製備最近受到廣泛的討論。奈米材料的研究範圍涵蓋包括金屬、非金屬、高分子材料、磁性材料等。在此粒徑範圍的粒子擁有一般巨觀材料所無法比擬的特殊性質。例如低熔點、高延展性、硬度、導電、導熱性質。
    在眾多的金屬奈米材料當中,因為銀奈米粒子具有相較於其他金屬優良的導電性、抗菌性、光學性質、以及作為氧化反應的催化效果,因而受到廣泛的研究興趣。例如,表面增強拉曼光譜(SERS),是微觀分析的一件強有力的工具,因為它提供關於局部的共振訊息,使用銀奈米材料可以使表面增強拉曼光譜(SERS)的敏感度大幅提高,因此可以作為生物感測器的應用。
    本篇論文分成三個研究主題。分別為研究利用微波合成的方法製備銀奈米棒/線的技術,以及探討加入核種後調整不同參數對成長銀奈米棒的影響,以及結合光學微影的技術對銀奈米材料做選區成長。
    在微波合成銀奈米粒子的部份,在研究中已經證實微波加熱技術(Microwave heating technology)為一種高效率合成的技術,可以成功的應用在奈米合成方面,在實驗中,不需要藉由任何模版或是高分子聚合物當作包覆劑的輔助,藉由調整不同的加熱溫度以及反應升溫速率,證實可製備出純度高的銀奈米棒以銀奈米線。
    在利用核種(Seeding growth)加入的部份,本實驗證實,利用核種的加入配合微波熱的技術,能夠在短時間且低溫的環境下合成出銀奈米棒,調整不同的參數,可以控制不同銀奈米棒的長寬比。
    在結合微影技術製作選區成長的研究部份。本實驗成功的研究出利用光學微影(Optical lithography)的技術結合微波加熱的方法,能夠快速且完整的直接在設計好圖形的矽晶圓基材上製作出選區成長的圖形。此方法將能有效應用在不同的設計圖形上;製作在石英基板上,探討其不同的光學性質,或是應用在銀奈米粒子具有和蛋白質特殊的親和力,能夠在未來應用在生物晶片上。


    Nanostructure materials has been interested in many areas of science and technology. This research range contains metal, non-metal, high polymer material, magnetic material, etc. The nanomaterials has many properties different from bulk materials, such as their low melting point, hardness, electric conduction.
    Amount different elements of NPs, it is well known that silver NPs have properties superior to other nanostructured metal particles, such as their electrical conductivities, antimicrobial effects, optical properties, and applications in oxidative catalysis. For example, surface enhanced Raman scattering (SERS), which occurs on roughened metal NPs, is a powerful tool for microanalysis because it provides vibrational information on local areas and as such has potential for bio-sensing. The enhanced factor of SERS using silver NPs has been estimated experimentally to be 106–1015. It is expected that SERS is extraordinary sensitive to be a practical technique for the detection of single molecules.
    There are three subjects in this research, including using microwave heating method for synthesis of silver nanorods/nanowires, adding to metal seed and control different parameter effect for silver nanorods, and combination with optical lithography for selective area growth of silver nanoparticles.
    In the fabrication of silver nanoparticles, it was found that a feasible method for synthesizing silver nanorods/nanowires. A close chamber of a microwave system with precise temperature and control of different ramp is employed to synthesize the silver nanorods/nanowires, without templete or polymer capping agent existence.
    Using seeding growth method for synthesizing of silver nanorods, it was found that using metal nanoparticles as a catalyst and combination with microwave heating method, adjusting different reaction time and catalyst volume, can synthesize silver nanorods with different aspect ratio.
    In the combination optical lithography and microwave heating for selective area synthesize of silver nanoparticles, it was found that using this method, silver nanoparticles grew on pattern that we have been designed before so quickly. Using this method, we can extend to other pattern and other materials﹔fabricate on quartz, confer with different optical property, or with high affinity for the desired bio-functional molecules, have application for biosensor fabrication in the future.

    Chapter 1 General Introduction……………………………...1 1.1 Origin and development of the science and technology of the “nano”…………………………………………………………………….2 1.1.1 The origin of the nano……………………………………………..2 1.1.2 What is nano?...................................................................................3 1.2 The characteristic of the nano material……………………………...4 1.3 Development and application of nanotechnology…………………12 1.3.1 The foundation of the nano material……………………………..12 1.3.2 The situation of the nano material research……………………...13 1.4 The purpose of this research……………………………………….16 Chapter 2 Reference Review ………………………………...19 2.1 Introductions of Nanoparticle……………………………………….20 2.1.1 Preparation of Colloidal Nanoparticles…………………………...20 2.1.2 Application of Nanoparticles……………………………………...21 2.2 Introduction of Selective Growth…………………………………...22 2.2.1 Preparation of Selective-area Growth……………………………..23 2.2.2 Application of Selective-area Growth ……………………………25 2.3 The microwave heating method…………………………………….25 2.3.1 The main advantage of microwave assisted reaction……………………27 Chapter 3 Experimental Section………………………………..31 3.1 Experiment material and medicines………………………………...32 3.2 Instrument…………………………………………………………...33 3.3 Experiment method…………………………………………………35 3.3.1 Preparation of gold nanoparticle as seeding by convention Method…………………………………………………………………35 3.3.2 Preparation for silver nanorods and nanowires by microwave heating method………………………………………………………….36 3.3.3 Self assembly gold nanoparticle method……………………………..36 3.3.4 Combination of Optical Lithography with Microwave Rapid Heating for selective-area growth of silver nanoparticle………………..37 3.3.5 Make sample for TEM or SEM use……………………………………38 Chapter 4 Study Microwave-assisted Synthesis of silver nanorods/nanawires………………………….........................39 4.1 The purpose of this research………………………………………...40 4.2 Microwave-assisted synthesis of silver nanorods/nanowires……….42 4.2.1 The effect of temperature…………………………………………43 4.2.2 The effect of the heating ramp( for 140℃)……………………….49 4.2.3 The effect of heating ramp( for 100℃)…………………………...52 Chapter 5 Formation of Silver nanorods by microwave heating in the presence of gold seeds………………………57 5.1 The purpose of this research……………………………………...58 5.1.1 The effect of seed volume………………………………………..58 5.1.2 The effect of reaction time……………………………………….67 Chapter 6 Combination with Optical Lithography and Microwave Rapid Heating Method for the Selective-area Synthesis of Silver Nanoparticles on Silicon Wafer………………………………..79 6.1 The purpose of this research………………………………………...80 6.2 Prepare Selective-area Synthesis of Silver Nanoparticles on Silicon Wafer……………………………………………………………………81 6.2.1 Evidence gold nanoparticles as a catalyst in this work…………...90 6.2.2 The effect of different reaction time………………………………91 Chapter 7 Conclusion………………………………………..95 7.1 Microwave-assisted Synthesis of nanorods/nanowires…………………...96 7.2 Formation of Silver nanorods by microwave heating in the presence of gold seeds………………………………………………………………………...97 7.3 Combination with Optical Lithography and Microwave Rapid Heating Method for the Selective-area Synthesis of Silver Nanoparticles on Silicon Wafer………………………………………………………...97 Reference……………………………………………………..99 The Author………………………………………………….107 Pubications paper................................108

    1. 呂世源,”奈米新世界”,科學發展月刊,359期,頁4-7(2002)
    2. http://www.gnt.com.tw/nanotech1.htm
    3. 王崇人,”神奇的奈米科學”,科學發展月刊,354期,頁48-51(2002)
    4. http://www.casys.com.tw/news/ReadNews.asp?NewsID=13
    5. http://www.sdnano.com/nano/metirealpaper.htm
    6. 牟中原、陳家俊,”奈米材料研究發展”,科學發展月刊,第28卷四期,頁281-288(2002)
    7. D.L. Feldheim, C.A. Foss, Eds., Metal Nanoparticles:Synthesis, Characterization, and Applications, Marcel Dekker, New York, 2002.
    8. M. A. El-Sayed, “Some Interesting Properties of Metals Confined in Time and Nanometer Space of Different Shapes”, Acc. Chem. Res., 34,257-264(2001)
    9. M. Valden, X. Lai, D.W. Goodman, “Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties”, Science 281, 1647-1649(1998)
    10. C. J. Murphy, “Nanocubes and nanoboxes”, Science, 298, 2139-2140 (2002)
    11. L. T. Chang, C. C. Yen, “Studies on the preparation and properties of conductive polymers. VIII. Use of heat treatment to prepare metalized films from silver chelate of PVA and PAN ”, J. Appl. Polym. Sci., 55,371-374(1995)
    12. Q. L. Feng, F. Z. Cui, T. N. Kin, “Ag-Substituted Hydroxyapatite Coatings with Both Antimicrobial Effects and Biocompatibility”, J. Mater. Sci. Lett.,18, 559-561(1999)
    13. W. Fritzsche, H. Porwol, A. Wiegand, S. Bornmann, J. M. Kohler, “In-situ formation of Ag-containing nanoparticles in thin polymer films”, Nanostruct. Mater.,10, 89-97(1998)
    14. Y. Shiraishi, N. Toshima,“Oxidation of ethylene catalyzed by colloidal dispersions of poly(sodium acrylate)-protected silver nanoclusters”, Colloid Surf.
    A, 169, 59-66(2000)
    15. C. A. Foss, G.. L. Hornyak, J. A. Stockert, C.R. Martin, “Template-Synthesized Nanoscopic Gold Particles: Optical Spectra and the Effects of Particle Size and Shape”, J. Phys. Chem., 98, 2963-2971(1994)
    16. Y. Y. Yu, S. S. Chang, C. L. Lee, C. R. C. Wang, “Gold Nanorods: Electrochemical Synthesis and Optical Properties”, J. Phys. Chem. B 101, 6661-6664(1997)
    17. M. H. Huang, A. Choudrey, P. D. Yang, “Ag nanowire formation within mesoporous silica”, Chem. Commun.,12, 1063-1064(2001)
    18. S. R. Nicewarner-Pena, R. G. Freeman, B. D. Reiss, L. He, D. J. Pena, I. D.Walton, R. Cromer, C. D. Keating, M. J. Natan, “Submicrometer metallic barcodes”, Science., 294,137-141(2001)
    19. N.R. Jana, L. Gearheart, C.J. Murphy, “Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio” Chem. Commun., 7, 617-618(2001)
    20. N. R. Jana, L. Gearheart, C. J. Murphy, “Wet Chemical Synthesis of High Aspect
    Ratio Cylindrical Gold Nanorods”, J. Phys. Chem. B,105, 4065-4067(2001)
    21. S. W. Lin, J. Yue, A. Gedanken, “Synthesis of Long Silver Nanowires from AgBr Nanocrystals”, Adv. Mater., 13, 656-658(2001)
    22. D. B. Zhang, L. M. Qi, J. M. Ma, H. M. Cheng, “Formation of Silver Nanowires in Aqueous Solutions of a Double-Hydrophilic Block Copolymer”, Chem. Mater., 13, 2753-2755(2001)
    23. V. F. Puntes, K. M. Krishnan, A. P. Alivisatos, “Colloidal nanocrystal shape and size control: The case of cobalt”, Science, 291, 2115-2117(2001)
    24. E. C. Walter, B. J. Murray, F. Favier, G.. Kaltenpoth, M. Grunze, R. M. Penner, “Noble and Coinage Metal Nanowires by Electrochemical Step Edge Decoration”, J. Phys. Chem. B, 106, 11407-11411(2002)
    25. Y. Sun, Y. Xia, “Large-Scale Synthesis of Uniform Silver Nanowires Through a Soft, Self-Seeding, Polyol Process”, Adv. Mater., 14, 833-837(2002)
    26. K. Kneipp, H. Kneipp, I. Itzkan, R.R. Dasari, M.S. Feld, “Ultrasensitive Chemical Analysis by Raman Spectroscopy”, Chem. Rev., 99, 2957-2976(1999)
    27. Y. Xia, Y. Sun, “Shape-controlled synthesis of gold and silver nanoparticles”, Science, 298, 2176-2179. (2002)
    28. a) D. H. Everett, Basic Principles of Colloid Science, Royal Society of Chemistry, London 1988. b)W. B. Russel, D. A. Saville, W. R. Schowalter, Colloidal Dispersions, Cambridge University Press, Cambridge 1989. c) R. J. Hunter, Introduction to Modern Colloid Science, Oxford University Press, Oxford 1993. d) Ordering and Phase Transitions in Colloidal Systems (Eds: A. K. Arora,B. V. R.Tata),VCH,Weinheim1996.
    29. Y. Xia, B. Gates, Y. Yin, and Y.Lu, “Monodispersed Colloidal Spheres: Old Materials with New Applications”, Adv. Mater., 12, 693-713(2000)
    30. Microscopy & Histology Catalog, Polysciences, Warrington, PA 1993-1994.
    31. C. W. Kuo, J.Y. Shiu, P. Chen, “Size-and Shape-Controlled Fabrication of Large-Area Periodic Nanopillar Arrays”, Chem. Mater., 15, 2917-2920(2003)
    32. A. Born, R. Wiesendanger, “Present and future developments of SPM systems as mass storage devices”, Appl. Phys. A-Mater, 68, 131-135(1999)
    33. J. C. Hulteen, D.A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, R. P. Van Duyne, “Nanosphere Lithography: Size-Tunable Silver Nanoparticle and Surface Cluster Arrays”, J. Phys. Chem. B, 103, 3854-3863(1999)
    34. Y. Xia, J. A. Rogers, K.E. Paul, G.M.Whitesides, “Unconventional Methods for Fabricating and Patterning Nanostructures”, Chem. Rev. , 99,1823-1848(1999)
    35. V. V. Poborchii, T. Tada, T. Kanayama, “A visible–near infrared range photonic crystal made up of Si nanopillars”, Appl. Phys. Lett., 75, 3276-3278(1999)
    36. K. Lee, S. A. Asher, “Photonic Crystal Chemical Sensors: pH and Ionic Strength”, J. Am. Chem. Soc., 122, 9534-9537(2000)
    37. P. R. Krauss, S. Y. Chou, “Nano-compact disks with 400 Gbit/in2 storage density fabricated using nanoimprint lithography and read with proximal probe”, Appl. Phys. Lett., 71, 3174-3176(1997)
    38. A. Born, R. Wiesendanger, “Present and future developments of SPM systems as mass storage devices”, Appl. Phys. A-Mater, 68, 131-135(1999)
    39. A. J. Haes, R. P. Van Duyne, “A Nanoscale Optical Biosensor: Sensitivity and Selectivity of an Approach Based on the Localized Surface Plasmon Resonance Spectroscopy of Triangular Silver Nanoparticles”, J. Am. Chem. Soc., 124, 10596-10604(2002)
    40. H. M. Kingston, Stephen J.Haswrll, Microwave-Enhanced Chemistry, Chapter1, 3-54,American Chemical Society, Washington(1997)
    41. 紀柏享、楊末雄、孫毓璋,”微波消化之方法與應用”,中國化學、第56卷四期,頁269-284(1998)
    42. A. I. Yanson, G..R. Bollinger, H.E. van den Brom, N. Agrait, J.M. van Ruitenbeek, “Formation and manipulation of a metallic wire of single gold atoms ”, Nature, 395, 783-785(1998).
    43. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, “Room-temperature ultraviolet nanowire nanolasers”, Science, 292 1897-1899(2001)
    44. Y. C. Cao, R. Jin, C.A. Mirkin, “Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection” Science 297,1536-1540(2002)
    45. S. Nie, S.R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced raman scattering”, Science, 275, 1102-1106(1997)
    46. O. Seitz, M. M. Chehimi, E. Cabet-Deliry, S. Truong, N. Felidj, C. Perruchot, S.J. Greaves, J.F. Watts, “Preparation and characterisation of gold nanoparticle assemblies on silanised glass plates”, Colloids Surf. A, 218, 225-239(2003)
    47. M. Suzuki, Y. Niidome, N. Terasaki, K. Inoue, Y. Kuwahara, S. Yamada, “Surface-Enhanced Nonresonance Raman Scattering of Rhodamine 6G Molecules Adsorbed on Gold NanorodsFilms”, Jpn. J. Appl. Phys., 43, L554-L556(2004)
    48. K. Kneipp, H. Kneipp, I. Itzkan, R.R. Dasari, M.S. Feld,“Ultrasensitive Chemical Analysis by Raman Spectroscopy”, Chem. Rev., 99, 2957-2976(1999)
    49. Y. Zhou, H. Itoh, T. Uemura, K. Naka, and Y. Chujo, “Synthesis of Novel Stable Nanometer-Sized Metal (M = Pd, Au, Pt) Colloids Protected by a -Conjugated Polymer”, Langmuir, 18, 277-283, (2002)
    50. K.K. Caswell, C.M. Bender, C.J. Murphy, “Seedless, Surfactantless Wet Chemical Synthesis of Silver Nanowires”, Nano Lett., 3, 667-669(2003)
    51. K.E.J. Lehtinen and M.R. Zachariah, “Effect of coalescence energy release on the temporal shape evolution of nanoparticles”, Phys. Rev. B, 63, 205402-205408 (2001)
    52. J. Turkevich, P.L. Stevenson, and J. Hillier, Discuss. Faraday Soc.11, 55 (1951)
    53. S. Komarneni, D. S. Li, B. Newalkar, H. Katsuki, and A.S. Bhalla, “Microwave-Polyol Process for Pt and Ag Nanoparticles”, Langmuir, 18, 5959-5962(2002)
    54. I.Girnus, K. Jancke, R. Vetter, J. Richter-Mendau, and J. Caro, “Large AIPO4-5 crystals by microwave heating”, Zeolites, 15, 33-39 (1995)
    55. X.C. Xu, W.S. Yang, J. Liu, and L.W. Lin, “Synthesis of a High-Permeance NaA Zeolite Membrane by Microwave Heating”, Adv. Mater., 12, 195-198 (2000)
    56. J. J. Zhu, O. Palchik, S. G. Chen, and A. Gedanken, “Microwave Assisted Preparation of CdSe, PbSe, and Cu2-xSe Nanoparticles”, J. Phys. Chem. B, 104, 7344-7347 (2000)
    57. M. M. Chowdhry, D. M. P. Mingos, A. J. P. White, and D. J. Williams, “Novel supramolecular self-assembly of a transition-metal-organo network based on simultaneous coordinate- and hydrogen-bond interactions” Chem. Commun., 8, 899-900 (1996)
    58. M. Larhed and A. Hallberg, “Microwave-Promoted Palladium-Catalyzed Coupling Reactions”, J. Org. Chem., 61, 9582-9584(1996)
    59. M. Majdoub, A. Loupy, A. Petit, and S. Roudesli, “Coupling focused microwaves and solvent-free phase transfer catalysis: application to the synthesis of new furanic diethers”, Tetrahedron, 52, 617-628 (1996)
    60. A. Henglein and M. Giersig, “Formation of Colloidal Silver Nanoparticles: Capping Action of Citrate”, J. Phys. Chem. B., 103, 9533-9539 (1999)
    61. M. B. Mohamed, K. Z. Ismail, S. Link, and M. A. El-Sayed, “Thermal Reshaping of Gold Nanorods in Micelles”, J. Phys.Chem.B., 102, 9370-9374 (1998)
    62. G. Rodriguez-Gattorno, D. Diaz, L. Rendon, and G. O. Hernandez-Segura, “Metallic Nanoparticles from Spontaneous Reduction of Silver(I) in DMSO. Interaction between Nitric Oxide and Silver Nanoparticles”, J. Phys. Chem. B., 106, 2482-2487 (2002)
    63. K.C. Grabar, R.G. Freeman, M.B. Hommer, M.J. Natan, “Preparation and Characterization of Au Colloid Monolayers”, Anal. Chem., 67, 735-743 (1995)
    64. W. E. Doering, S. Nie, “Single-Molecule and Single-Nanoparticle SERS: Examining the Roles of Surface Active Sites and Chemical Enhancement”, J. Phys. Chem. B., 106, 311-317(2002)
    65. Y. Sun, B. Gates, B. Mayers, Y. Xia, “Crystalline Silver Nanowires by Soft Solution Processing”, Nano Lett., 2, 165-168(2002)
    66. J.M. Petroski, Z.L. Wang, T.C. Green, M.A. El-Sayed, “Kinetically Controlled Growth and Shape Formation Mechanism of Platinum Nanoparticles”, J. Phys. Chem.B., 102, 3316-3320 (1998)
    67. H. Zhang, H.X. He, J. Wang, Z.F. Liu, “Atomic Force Microscopy Evidence of Citrate Displacement by 4-Mercaptopyridine on Gold in Aqueous Solution”, Langmuir, 16, 4554-4557(2000)
    68. Y. F. Tan, Y. F. Li, D. B. Zhu, “Preparation of silver nanocrystals in the presence of aniline”, J. Colloid Interf. Sci., 258, 244-251(2003)
    69. A. R. Roosen, W. C. Carter, “Simulations of microstructural evolution: anisotropic growth and coarsening”, Physica A, 261, 232-247(1998)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE