研究生: |
王廷瑄 Wang, Ting-Hsuan |
---|---|
論文名稱: |
利用過渡金屬催化之碳氫鍵活化反應合成雜芳香環分子結構 Transition Metal Catalyzed C–H Bond Transformation of Heteroarenes for Molecular Synthesis |
指導教授: |
王朝諺
Ong, Tiow-Gan 王本誠 Wang, Pen-Cheng |
口試委員: |
鄭郅言
Cheng, Ji-Yen 蔡福裕 Tsai, Fu-Yu 郭俊宏 Kuo, Chun-Hong 陳馨怡 Chen, Hsin-Yi |
學位類別: |
博士 Doctor |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2017 |
畢業學年度: | 106 |
語文別: | 英文 |
論文頁數: | 294 |
中文關鍵詞: | 有機金屬 、催化 、碳氫鍵活化 |
外文關鍵詞: | organometallic, catalysis, C–H bond activation |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
過渡金屬催化之碳氫鍵活化反應為有機化合物合成中最具效率且應用性高的方法之一,其廣泛地被運用在藥物、天然物以及光電材料領域。碳氫鍵活化反應因為具有原子經濟性,可減少化學廢物以及提升效率,而被認為是更環保的綠色化學合成策略。因此,本篇論文將介紹三套催化系統,分別利用不同過渡金屬進行新穎的碳氫鍵活化反應。
第一章節將簡介碳氫鍵活化催化反應,包括其發展歷史、原理、分類與應用;以動力學角度,碳氫鍵斷裂須具備很高的活化能,因此有機配體經常扮演調控碳氫鍵轉化的關鍵角色,此結果將在此章節進行討論。
在第二章節的研究中,我們透過高效能鈀金屬催化,建立一套異原子芳香環與苯乙烯和其他烯烴衍生物的交叉脫氫偶合反應系統。該烯基化反應涵蓋廣泛的烯烴衍生物,並且提供了新型合成C2-反側異構體-烯基化吡咯環單體的簡單方法。
第三章節,我們透過釕金屬促進(sp2)碳–(sp3)碳鍵生成反應,將異喹啉和吡啶衍生物以立體選擇性活化其碳–氫鍵並與各種鹵化烷基反應,得到產率良好之1號位取代異喹啉而不須要依賴任何引導基團的螯合協助。此外,透過添加水,可將反應切換至去芳構化模式,得到一步化新產物:異喹啉酮。
最後一章,我們利用鎳金屬催化劑活化雜原子芳香環的碳氫鍵,並設計出一套可切換之環狀二烯氫化雜芳基化反應。在含氮雜環碳烯配體的存在下,環狀二烯與吡咯環可反應生成Heck類型產物(α-烯基-吡咯)而不須外加任何氧化劑;相反地,若將配體改變為三取代磷烷,則反應將被轉換而得到其它異構型態的β-烯基-吡咯。
Transition metal mediated C–H functionalization is a powerful and efficient way to synthesize organic compounds in the fields of drug development, bioactive natural products to optoelectronic materials and so on. This methodology is perceived as greener synthetic strategy, because of its atomic- and step-economy in terms of managing chemical resource and waste. This thesis focuses on the development of a new chemistry related to catalytic C–H bond activation promoted by transition metal.
Chapter I introduces the catalytic C–H bond activation, including the historical perspective, chemical principle, reactivity classifications and applications. The ligand’s science is also discussed, as the ligand plays a critical role in modulating the kinetically demanding step: C–H bond transformation.
Chapter II shows the development of an efficient Pd-catalyzed cross-dehydrogenative coupling of heteroarenes with styrenes and other olefinic substrates. This alkenylation paradigm encompasses a wide range of substrate scopes and provides a straightforward approach toward C2-E-alkenylated azole motifs.
Chapter III unravels the ruthenium-promoted prototype reaction based on C(sp2)–C(sp3) bond formation through the regioselective C–H activation of isoquinoline and pyridine derivatives with various alkyl halides, leading to 1-substituted isoquinoline products without relying on any chelation assistances. Simultaneously, this system is also able to chemically tune the reaction mode to dearomatization by adding water, leading to isoquinolones in one single step.
Chapter IV describes a Ni-catalyzed switchable hydroheteroarylation of cyclic dienes via C–H bond activation of heteroarenes. In the presence of an NHC ligand, hydroheteroarylation of cyclic diene with azole affords α-alkenyl-azole, forging a Heck-like product without using any external oxidant. Conversely, changing the ligand to PCy3 would switch this reaction manifold to afford the other isomeric β-alkenyl substituted azole.
1. General References to Textbooks in Catalysis: (a) Boudart, M.; Djega-Mariadassou, G. Kinetics of Heterogeneous Catalytic Reactions; Princeton University Press: Princeton, 1984. (b) Gates, B.C. Catalytic Chemistry; Wiley: New York, 1992. (c) Moulijn, J. A.; van Leeuwen, P. N. W. M.; van Santen, R. A. Catalysis: an Integrated Approach to Homogeneous, Heterogeneous and Industrial Catalysis; Elsevier: Amsterdam, 1993. (d) van Santen, R. A.; Niemantsverdriet, J. W. Chemical Kinetics and Catalysis; Plenum: New York, 1995. (e) Bowker, M. The Basis and Applications of Heterogeneous Catalysis; Oxford University Press: Oxford, 1998. (f) Cotton, F. A.; Wilkinson, G.; Murillo, C. A.; Bochmann, N. Advanced Inorganic Chemistry; Wiley: New York, 1999. (g) Farnetti, E.; Monte, R. D.; Kašpar, J. Homogeneous and Heterogeneous Catalysis. In Inorganic and Bio-Inorganic Chemistry; Bertini, I, Mori, M.; EOLSS: France, 2004.
2. Hagen, J. Industrial Catalysis: A Practical Approach; Wiley-VCH: Germany, 2006.
3. Kieboom, A. P. G.; Moulijn, J. A.; van Leeuwen, P. W. N. M.; van Santen, R. A. History of Catalysis, in: Catalysis: An integrated approach; Elsevier Science: Amsterdam, 1999; pp 3-28.
4. (a) Atkins, P.; de Paua J. Physical Chemistry for the Life Sciences. Oxford Univeristy Press: New York, 2006; pp 256-259. (b) Garrett, R. H.; Grisham, C. M. Biochemistry, 3rd ed.; Thomson Learning, Inc.: California, 2005; pp 64. (c) Wade, L. G. Organic Chemistry, 6th ed.; Pearson Prentice Hall: New Jersey, 2006; pp 139-142.
5. (a) Mingos, D.; Michael, P. Nitrosyl Complexes in Inorganic Chemistry, Biochemistry and Medicine I; Springer; Oxford, 2014. (b) Fleig, D.; Andersson, K.; Normann, F.; Johnsson F. Ind. Eng. Chem. Res. 2011, 50, 8505-8514.
6. Wurtz reaction: (a) Wurtz A. Annales de chimie et de physique, 1855, 44, 275-312. (b) Wurtz A. Annalen der Chemie und Pharmacie 1855, 96, 364-375.
7. Grignard reaction: (a) Grignard, V. Compt. Rend. 1900, 130, 1322-1325. (b) Rakita, P. E.; Silverman, G. eds. Handbook of Grignard reagents; Marcel Dekker: New York, 1996.
8. Typical C–C cross-coupling reactions: (a) Tamao, K.; Sumitani, K.; Kumada, M. J. Am. Chem. Soc. 1972, 94, 4374-4376. (b) Heck, R. F.; Nolley, J. P. J. Org. Chem. 1972, 37, 2320-2322. (c) Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975, 16, 4467-4470. (d) King, A. O.; Okukado, N.; Negishi, E. J. Chem. Soc. Chem. Commun. 1977, 0, 683-684. (e) Milstein, D.; Stille, J. K. J. Am. Chem. Soc. 1978, 100, 3636-3638. (g) Hatanaka, Y.; Hiyama, T. J. Org. Chem. 1988, 53, 918-920. (h) Paul, F.; Patt, J.; Hartwig, J. F. J. Am. Chem. Soc. 1994, 116, 5969-5970. (i) Guram, A. S.; Buchwald, S. L. J. Am. Chem. Soc. 1994, 116, 7901-7902.
9. Selected review papers of C–H bond activation: (a) Wang, D.-H.; Engle, K.-M.; Shi, B.-F.; Yu, J.-Q. Science 2010, 327, 315-319. (b) Chen, X.; Engle, K.-M.; Wang, D.-H.; Yu, J.-Q. Angew. Chem., Int. Ed. 2009, 48, 5094-5115. (c) Daugulis, O.; Do, H.-Q.; Shabashov, D. Acc. Chem. Res. 2009, 42, 1074-1086. (d) Ackermann, L.; Vicente, R.; Kapdi, A. R. Angew. Chem., Int. Ed. 2009, 48, 9792-9826. (e) Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147-1169. (f) McGlacken, G. P.; Bateman, L. M. Chem. Soc. Rev. 2009, 38, 2447-2464. (g) Godula, K.; Sames, D. Science 2006, 312, 67-72. (h) Colby, D. A.; Bergman, R. G.; Ellman, J. A. Chem. Rev. 2010, 110, 624-655. (i) Satoh, T.; Miura, M. Chem. Lett. 2007, 36, 200-205. (j) Newhouse, T.; Baran, P. S. Angew. Chem., Int. Ed. 2011, 50, 3362-3374. (k) Wendlandt, A. E.; Suess, A. M.; Stahl, S. S. Angew. Chem., Int. Ed. 2011, 50, 11062-11087. (l) Davies, H. M. L.; Morton, D. Chem. Soc. Rev. 2011, 40, 1857-1869. (m) Kuhl, N.; Hopkinsion, M. N.; Wencel-Delord J.; Glorius, F. Angew. Chem., Int. Ed. 2012, 51, 10236-10254. (n) Ackermann, L. Chem. Rev. 2011, 111, 1315-1345. (o) Wencel-Delord, J.; Droge, T.; Liu, F.; Glorius, F. Chem. Soc. Rev. 2011, 40, 4740-4761.
10. Phosphine Ligands: (a) Chatt, J.; Mann, F. G. J. Chem. SOC. 1938, 1949-1954. (b) Leigh, G. J.; Winterton, N. Eds. Modern Coordination Chemistry: The Legacy of Joseph Chatt; Royal Society of Chemistry: Cambridge, 2002. (c) Levason, W. in The Chemistry of Organophosphorus Compounds, Hartley, F. R. ed.; John Wiley & Sons: New York, Vol. 1, 1990.
11. (a) Yamanaka, M.; Mikami, K. Organometallics 2005, 24, 4579-4587. (b) Crabtree, R. H. The organometallic chemistry of the transition metals, 6th ed.; John Wiley & Sons: New York, 2014.
12. Tolman, C. A. J. Am. Chem. Soc. 1970, 92, 2956-2965.
13. (a) Tolman, C. A. Chem. Rev. 1977, 77, 313-348. (b) Bunten, K. A.; Chen, L.; Fernandez, A. L.; Poë, A. J. Coord. Chem. Rev. 2002, 233, 41-51.
14. Tertiary amine ligands: (a) Chatt, J. Molecular nitrogen as a ligand in Pure and Applied Chemistry; IUPAC: North Carolina, 1970; Vol. 24, pp 425-441. (b) Togni, A.; Venanzi, L. M. Angew. Chem. Int. Ed. Engl. 1994, 33, 497-526. (c) Caipa Campos, M. A. Nitrogen-based ligands: synthesis, coordination chemistry and transition metal catalysis; Technische Universiteit Eindhoven: Eindhoven, 2005.
15. NHCs: (a) Crabtree, R. H. J. Organomet. Chem. 2005, 690, 5451-5457. (b) Hopkinson, M. N.; Richter, C.; Schedler, M.; Glorius, F. Nature 2014, 510, 485-496. (c) Regitz, M. Angew. Chem., Int. Ed. Engl. 1996, 35, 725-728. (d) Arduengo, A. J.; Krafczyc, R. Chem. Zeit. 1998, 32, 6-14. (e) Lavallo, V.; Canac, Y.; De Hope, A.; Donnadieu, B.; Bertrand, G. Angew. Chem. Int. Ed. 2005, 44, 7236-7239. (f) Benhamou, L.; Chardon, E.; Lavigne, G.; Bellemin-Laponnaz, S.; César, V. Chem. Rev. 2011, 111, 2705-2733.
16. (a) Bourissou, D.; Guerret, O.; Gabbai, F. P.; Bertrand, G. Chem. Rev. 2000, 100, 39-91. (b) Hirai, K.; Itoh, T.; Tomioka, H. Chem. Rev. 2009, 109, 3275-3332.