簡易檢索 / 詳目顯示

研究生: 劉育嘉
Liu, Yu-Chia
論文名稱: 低熱變形與低雜訊之多通道電容感測界面CMOS-MEMS加速度感測器的設計與實現
Design and Implementation of Low Thermal Drift and Low-Noise Capacitive Multi-Channel Sensing Interface CMOS-MEMS Accelerometers
指導教授: 方維倫
Fang, Weileun
口試委員: 王珮華
謝哲偉
林宗賢
張嘉展
鄒慶福
李昇憲
學位類別: 博士
Doctor
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 169
中文關鍵詞: CMOS-MEMS電容式加速度計熱穩定性選擇性電鍍純二氧化矽結構多通道電容感測介面全差分感測
外文關鍵詞: Capacitive accelerometer, Selective electroplating, Pure oxide structure, Multi-channel readout circuit, Fully-differential sensing
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著微機電系統發展不斷推陳出新,利用標準平台發展出相關元件,始終成為此領域之關鍵技術。透過CMOS-MEMS製程技術,同時整合微結構與感測電路在同一晶片上,不僅可以利用半導體本身可縮小線寬、批量製造與系統整合優勢,也能提高其附加價值,因此,相關技術之發展重要性不可言喻。
    本研究欲利用TSMC 0.35 μm 2P4M標準CMOS製程平台來設計出電容式感測晶片,以加速度計作為研究主軸,在結構設計部分,針對一般CMOS-MEMS加速度計進行設計改良與效能提升,分別設計出兩種改良型態的加速度計結構。第一種為具有選擇性電鍍鎳於CMOS晶片上,具以下三個特色:(i)選擇性電鍍可藉由CMOS與MEMS標準製程實現,(i)電鍍鎳結構厚度可改善質量塊重量與結構剛性,進而抑制結構對溫度效應的敏感性,(iii)電鍍後製程為常溫製程,不會影響CMOS金屬層與感測電路,綜合以上優點成功提升加速度計效能(例如靈敏度、雜訊準位以及最小可偵測訊號)。第二種改良型態加速度計為利用單層二氧化矽材料作為CMOS-MEMS加速度計結構,具有以下四個特色:(i)降低MEMS結構懸浮後因殘餘應力所產生的初始形變,(ii)抑制複合膜層因熱膨脹係數不同所產生的形變量,(iii)在純二氧化矽質量塊中電性的繞線可以大幅降低寄生電容進而提升感測靈敏度,(iv)低溫度效應未來可相容於封裝溫度,綜合以上優點使其具有高靈敏度與低熱飄移。
    此外,在電容感測介面電路提出多通道(Multi-channel)感測機制讀取多軸感測器訊號,具有以下三個特色:(i)加速度感測器結構電性透過全差分電性連結,可有效抑制共模雜訊,(ii)感測電路透過時脈切換的方式對感測器訊號進行讀取,使整顆晶片具有高訊雜比與小尺寸特色,(iii)此電路架構可整合其他電容式感測器例如三軸陀螺儀與三軸磁力計,使單晶片系統有最小晶片面積。


    There are many different fabrication processes for Micro-Electro-Mechanical System (MEMS). However, the standard fabrication process is a major factor which plays an important role in MEMS. In this study, a capacitive sensing chip is proposed to use TSMC 0.35 μm 2-polysilicon 4-Metal (2P4M) standard process. Two novel designs together with capacitive interface circuitry of accelerometers were respectively proposed in thesis.
    First study presents a simple approach to improve the performance of CMOS-MEMS capacitive accelerometer by means of the post-CMOS metal electroplating process. The metal layer can be selectively electroplated on the MEMS structures at low temperature; and the thickness of metal layer can be easily adjusted by process. Thus, the performance of capacitive accelerometer (i.e., structure deformation, sensitivity) can be improved significantly.
    Second study proposed the stacking of pure oxide layers as the mechanical structures for CMOS-MEMS accelerometer has been developed and demonstrated for the first time. Thus, the distribution of metal-oxide composites in CMOS-MEMS accelerometer is changed from area to line. Such design has the following advantages to solve the initial deformation of suspended MEMS structures due to the residual stresses of metal-oxide films, as well as the thermal deformation of suspended MEMS structures due to the thermal expansion coefficient (CTE) mismatch of metal-oxide films. The parasitic capacitance of sensing electrodes routing underneath the proof-mass also can be further reduced. In addition, the CMOS multi-channel readout circuit on a single chip was developed to sense the time-varient sensing signal. Thus, the smallest footprint of chip size can be achieved.

    致謝 i 中文摘要 ii Abstract iii 目 錄 iv 圖目錄 vii 表目錄 xiv 符號對照表 xv 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 3 1-2-1 CMOS製程分類 4 1-2-2 CMOS-MEMS各類感測器 6 1-2-3 CMOS-MEMS電容式加速度計文獻回顧 9 1-3 研究動機 11 1-4 研究目標與架構 13 第二章 電容式加速度計設計考量 28 2-1 加速度計設計參數與量測規格說明 28 2-2 加速度計操作原理與設計考量 30 2-3 電容式感測電路原理 34 2-3-1 交換電容式感測電路(SC) 34 2-3-2 連續時間式電壓感測電路(CTV) 35 2-3-3 連續時間式電流感測電路(CTC) 37 2-4 加速度計系統雜訊分析 38 第三章 選擇性電鍍技術應用於加速度感測器設計與實現 48 3-1 元件結構設計分析 48 3-1-1 結構改良設計動機 48 3-1-2 結構模擬與晶片佈局考量 49 3-2 系統雜訊分析 53 3-3 電鍍後製程製作流程與製作結果 53 3-4 量測結果與討論 55 3-4-1 機械結構特性量測 55 3-4-2 CMOS-MEMS系統電性量測 56 3-5 小結 58 第四章 純二氧化矽結構型態加速度感測器設計與實現 80 4-1 元件結構設計分析 80 4-1-1 殘餘應力與熱膨脹係數不匹配 81 4-1-2 寄生電容分析 83 4-1-3 結構分析模擬 83 4-2 系統雜訊分析 85 4-3 元件後製程製作流程與結果 86 4-4 量測結果與討論 88 4-4-1 機械結構特性量測 88 4-4-2 CMOS-MEMS系統電性量測 89 4-5 小結 91 第五章 多通道電容感測介面電路設計分析與實現 116 5-1 電路介面設計分析 116 5-1-1 設計動機 116 5-1-2 電路架構設計分析 117 5-2 運算放大器設計分析與系統模擬 121 5-2-1 感測電路設計模擬與佈局 122 5-2-2 CMOS-MEMS整合模擬 125 5-3 製造與量測結果 125 5-4 小結 126 第六章 論文貢獻與未來工作 147 6-1 選擇性電鍍後製程開發 147 6-2 純二氧化矽感測器製程平台開發 148 6-3 加速度計感測電路與量測架構改善 149 參考文獻 155 研究著作 167

    [1]. G. T. A. Kovacs, N. I. Maluf, and K. E. Petersen, “Bulk micromachining of silicon,” Proc. IEEE, vol. 86, pp. 1536-1551, 1998.
    [2]. J. M. Bustillo, R. T. Howe, and R. S. Muller, “Surface micromachining for microelectromechanical systems,” Proc. IEEE, vol. 86, pp. 1552-1574, 1998.
    [3]. O. Brand, “Microsensor integration into system-on-chip,” Proc. IEEE, vol. 94, pp. 1160-1176, 2006.
    [4]. IRTS Roadmap 2005, http://www.itrs.net/
    [5]. G. K. Fedder, R. T. Howe, T.-J. King Liu, E. P. Quevy, “Technologies for cofabricating MEMS and electronics,” Proc. IEEE, vol. 96, pp. 306-322, 2008.
    [6]. E. Marigo, J. L. Lopez, G. Murillo, F. Torres, J. Giner, A. Uranga, G. Abadal, J. Esteve, and N. Barniol, “Zero-level packaging of MEMS in standard CMOS technology,” J. Micromech. Microeng., vol. 20, 064009, 2010.
    [7]. N. Yazdi, F. Ayazi, and K. Najafi, “Micromachined inertial sensors,” Proc. IEEE, vol. 86, pp. 1640-1659, 1998.
    [8]. H. Baltes, O. Brand, A. Hierlemann, D. Lange, and C. Hagleitner, “CMOS MEMS – present and future,” in Proc. 15th IEEE Int. Conf. Micro Electro Mech. Syst., Las Vegas, NV, Jan., 2002, pp. 459-466.
    [9]. J. H. Smith, S. Montague, J. J. Sniegowski, J. R. Murray, and P. J. McWhorter, “Embedded micromechianical devices for the monolithic integration of MEMS with CMOS,” IEEE Electron Device Meeting,, San Francisco, CA, 1995, pp. 609-612.
    [10]. M. W. Judy, “Evolution of integrated inertial MEMS technology,” in Proc. Solid-state Sensor, Actuator and Microsystem Workshop, 2004, pp. 27-32.
    [11]. T. Scheiter, H. Kapels, K.-G. Oppermann, M. Steger, C. Hierold, W. M. Werner, and H.-J. Timme, “Full integration of a pressure-sensor system into a standard BiCMOS process,” Sens. Actuators A, vol. 67, pp. 211-214, 1998.
    [12]. J. Ji, and K. D. Wise, “An implantable CMOS circuit interface for multiplexed microelectrode recording arrays” IEEE J. Solid-State Circuits, vol. 27, pp. 433-443, 1992.
    [13]. C.-M Sun, C. Wang, M.-H. Tsai, H.-S. Hsieh, and W. Fang, “Monolithic integration of capacitive sensors using a double-side CMOS MEMS post process,” J. Micromech. Microeng., vol. 19, 015023, 2009.
    [14]. G. K. Fedder, “CMOS-Based Sensors,” in Proc. IEEE Sensors 2005, Irvine, CA, Oct., 2005, pp. 125-128.
    [15]. M. Paramerswaran, H. P. Baltes, L. Ristic, A. C. Dhaded, and A. M. Robinson, “A new approach for the fabrication of micromechanical structures,” Sens. Actuators, vol. 19, pp. 289-307, 1989.
    [16]. C.-L. Dai, F.-Y. Xiao, Y.-Z. Juang, and C.-F. Chiu, “An approach to fabricating microstructures that incorporate circuits using a post-CMOS process,” J. Micromech. Microeng., vol. 15, pp. 98-103, 2005.
    [17]. H. Luo, G. Zhang, L. R. Carley, and G. K. Fedder, “A post-CMOS micromachined lateral accelerometer,” IEEE J. Microelectromech. Syst., vol. 11, pp. 188-195, 2002.
    [18]. H. Xie, L. Erdmann, X. Zhu, K. J. Gabriel, and G. K. Fedder, “Post-CMOS processing for high-aspect-ratio integrated silicon microstructures,” IEEE J. Microelectromech. Syst., vol. 11, pp. 93-101, 2002.
    [19]. E. Yoon, and K. D. Wise, “An integrated mass flow sensor with on-chip CMOS interface circuitry,” IEEE Trans. Electron Devices, pp. 1376-1386, 1992.
    [20]. S. Eminoglu, D. S. Tezcan, M. Y. Tanrikulu, and T. Akin, “Low-cost uncooled infrared detectors in CMOS process,” Sens. Actuators A, vol. 109, pp. 102-113, 2003.
    [21]. W.-C. Chen, W. Fang, and S.-S. Li, “A generalized CMOS-MEMS platform for micromechanical resonators monolithically integrated with circuits,” J. Micromech. Microeng., vol. 21, 065012, 2011.
    [22]. C.-T. Ko, S.-H. Tseng, and M.S.-C. Lu, “A CMOS micromachined capacitive tactile sensor with high-frequency output,” IEEE J. Microelectromech. Syst., vol. 15, pp. 1708-1714, 2006.
    [23]. S. Sedky, A. Witvrouw, H. Bender, and K. Baert, “Experimental determination of the maximum post-process annealing temperature for standard CMOS wafers,” IEEE Trans. Electron Devices, vol. 48, pp. 377-385, 2001.
    [24]. C. T.-C. Nguyen, and R. T. Howe, “CMOS micromechanical resonator oscillator,” IEEE Electron Device Meeting, Los Angeles, USA, Dec., 1993, pp. 193-202.
    [25]. A. E. Franke, J. M. Heck, T.-J. King, and R. T. Howe, “Polycrystalline silicon-germanium films for integrated microsystems,” IEEE J. Microelectromech. Syst., vol. 12, pp. 160-171, 2003.
    [26]. A. Scheurle, T. Fuchs, K. Kehr, C. Leinenbach, S. Kronmuller, A. Arias, J. Ceballos, M. A. Lagos, J. M. Mora, J. M. Munoz, A. Ragel, J. Ramos, S. V. Aerde, J. Spengler, A. Mehta, A. Verbist, B. D. Bios, and A. Witvrouw, “A 10m thick poly-SiGe gyroscope processed above 0.35m CMOS,” in Proc. 20th IEEE Int. Conf. Micro Electro Mech. Syst., Kobe, Japan, Jan., 2007, pp. 39-42.
    [27]. A. Witvrouw, L. Haspeslagh, O. V. Pedreira, J. D. Coster, I. D. Wolf, H. A. C. Tilmans, T. Bearda, B. Schlatmann, M. Bommel, M.-C. Nooijer, P. H. C. Magnee, E. J. Lous, M. Hagting, J. Lauria, R. Vanneer, and B. Drieenhuizen, “11-megapixel CMOS-integrated SiGe micromirror arrays for high-end applications,” IEEE J. Microelectromech. Syst., vol. 19, pp. 202-214, 2010.
    [28]. H. Baltes, “Future of IC microtransducers,” Sens. Actuators A, vol. 56, pp. 179-92, 1996.
    [29]. F. Mayer, G. Salis, J. Funk, O. Paul, and H. Baltes, “Scaling of thermal CMOS gas flow microsensors: experiment and simulation”, in Proc. 9th IEEE Int. Conf. Micro Electro Mech. Syst., San Diego, CA, Feb., 1996, pp. 116-121.
    [30]. H. Baltes, O. Paul, and O. Brand, “Micromachined thermally based CMOS microsensors,” Proc. IEEE, vol. 86, pp. 1660-1678, 1998.
    [31]. H. Xie, Y. Pan, and G. K. Fedder, “Endoscopic optical coherence tomographic imaging with a CMOS-MEMS micromirror,” Sens. Actuators A, vol. 103, pp. 237-241, 2003.
    [32]. Michael S.-C. Lu, and G. K. Fedder, “Position control of parallel-plate microactuators for probe-based data storage,” IEEE J. Microelectromech. Syst., vol. 13, pp. 759-769, 2004.
    [33]. N. Lazarus, S. S. Bedair, C.-C. Lo, and G. K. Fedder, “CMOS-MEMS capacitive humidity sensor,” IEEE J. Microelectromech. Syst., vol. 19, pp. 183-191, 2010.
    [34]. J. Reinke, G. K. Fedder, and T. Mukherjee, “CMOS-MEMS variable capacitors using electrothermal actuation,” IEEE J. Microelectromech. Syst., vol. 19, pp. 1105-1115, 2010.
    [35]. Y. Li, C. Vancura, D. Barrettino, M. Graf, C. Hagleitner, A. Kummer, M. Zimmermann, K.-U. Kirstein, and A. Hierlemann, “Monolithic CMOS multi-transducer gas sensor microsystem for organic and inorganic analytes,” Sens. Actuators B, vol. 126, pp. 431-440, 2007.
    [36]. S. Kawahito, C. Maier, M. Schneiher, M. Zimmermann, and H. Baltes, “A 2D CMOS microfluxgate sensor system for digital detection of weak magnetic fields,” IEEE J. Solid-State Circuits, vol. 34, pp. 1843-1851, 1999.
    [37]. M. Graf, D. Barrettino, K.-U. Kirstein, and A. Hierlemann, “CMOS microhotplate sensor system for operating temperatures up to 500℃,” Sens. Actuators B, vol. 117, pp. 346-352, 2006.
    [38]. C. Hagleitner, D. Lange, A. Hierlemann, O. Brand, and H. Baltes, “CMOS single-chip gas detection system comprising capacitive, calorimetric and mass-sensitive microsensors,” IEEE J. Solid-State Circuits, vol. 37, pp. 1867-1878, 2002.
    [39]. M. Doelle, J. Held, P. Ruther, and O. Paul, “Simultaneous and independent measurement of stress and temperature using a single filed-effect transistor strcture,” IEEE J. Microelectromech. Syst., vol. 16, pp. 1232-1242, 2007.
    [40]. K. Seidl, S. Herwil, T. Torfs, H. P. Neves, O. Paul, and P. Ruther, “CMOS-based high-density silicon microprobe arrays for electronic depth control in intracortical neural recording,” IEEE J. Microelectromech. Syst., vol. 20, pp. 1439-1448, 2011.
    [41]. J. L. Lopez, J. Verd, G. Murillo, J. Giner, F. Torres, A. Uranga, G. Abadal, and N. Barniol, “Intgration of RF-MEMS resonators on submicrometric commercial CMOS technologies,” J. Micromech. Microeng., vol. 19, 015002, 2009.
    [42]. J. Verd, A. Uranga, G. Abadal, J. Teva, F. Torres, J. L. Lopez, F. Perez-Murano, J. Esteve, and N. Barniol, “Monolithic CMOS MEMS oscillator circuit for sensing in the attogram range,” IEEE Electron Device Lett., vol. 29, pp. 146-148, 2008.
    [43]. J. L. Lopez, J. Verd, A. Uranga, J. Giner, G. Murillo, F. Torres, G. Abadal, and N. Barniol, “A CMOS-MEMS RF-tunable bandpass filter based on two high-Q 22MHz polysilicon clamped-clamped beam resonators,” IEEE Electron Device Lett., vol. 30, pp. 718-720, 2009.
    [44]. J. Giner, A. Uranga, J. L. Munoz-Gamarra, E. Marigo, and N. Barniol, “A fully integrated programmable dual-band RF filter based on electrically and mechanically coupled CMOS-MEMS resonator,” J. Micromech. Microeng., vol. 22, 055020, 2012.
    [45]. C.-L. Dai, C.-L. Chang, H.-L. Chen, and P.-Z. Chang, “Fabrication of the Planar Angular Rotator Using the CMOS Process”, J. Micromech. Microeng., vol. 12, pp. 247-251, 2002.
    [46]. Y.-C. Cheng, C.-L. Dai, C.-Y. Lee, P.-H. Chen, and P.-Z. Chang, “A MEMS micromirror fabricated using CMOS post-process”, Sens. Actuators A, vol. 120, pp. 573-581, 2005.
    [47]. C.-L. Dai, “A capacitive humidity sensor integrated with micro heater and ring oscillator circuit fabricated by CMOS-MEMS technique,” Sens. Actuators B, vol. 122, pp. 375-380, 2007.
    [48]. C.-L- Dai, C.-H. Kuo, and M.-C. Chiang, “Microelectromechanical resonator manufactured using CMOS-MEMS technique,” Microelectronics J., vol. 38, pp. 672-677, 2007.
    [49]. C.-L. Dai, P.-H. Kao, Y.-W. Tai, and C.-C. Wu, “Micro FET pressure sensor manufactured using CMOS-MEMS technique,” Microelectronics J., vol. 39, pp. 744-749, 2008.
    [50]. M.-H. Chen, and Michael S.-C. Lu, “Design and characterization of an air-coupled capacitive ultrasonic sensor fabricated in a CMOS process,” J. Micromech. Microeng., vol. 18, 015009, 2009.
    [51]. P.-K. Tang, P.-H. Wang, M.-L. Li, and Michael S.-C. Lu, “Design and characterization of the immersion-type capacitive ultrasonic sensors fabricated in a CMOS process,” J. Micromech. Microeng., vol. 18, 025013, 2011.
    [52]. Michael S.-C. Lu, Y.-C. Chen, P.-C. Huang, “5×5 capacitive sensor array for detection of the neurotransmitter dopamine,” Biosensors and Bioelectronics, vol. 26, pp. 1093-1097, 2010.
    [53]. S.-H. Tseng, Michael S.-C. Lu, Y.-J. Hung, and Y.-Z. Juang, “High-Q CMOS MEMS resonator oscillator fabricated in a MPW batch process,” EUROSENSORS XXIV, Linz, Austria, Sep., 2010, pp. 1360-1363.
    [54]. S.-J. Chen, and C.-H. Shen, “A novel two-axis CMOS accelerometer based on thermal convection,” IEEE Trans. Instrum. Meas., vol. 57, pp. 1572-1577, 2008.
    [55]. Y.-J. Pon, C.-H. Shen, and S.-J. Chen, “A Low Cost High Sensitivity CMOS MEMS Gas Sensor,” in Proc. IEEE Instrum. Meas. Tech. Conference, Austin, Texas, USA, May 3-6, 2010.
    [56]. K.-Y. Lee, J.-T. Huang, H.-J. Hsu, C.-K. Chen, and T.-C. Tsai, “Fabrication technology of CMOS-MEMS probe chip compatiable with electroless nickel plating process,” in Proc. 5th IEEE Int. Microsystems Packaging Assembly and Circuits Technology Conf., Taipei, Taiwan, Oct., 2010, pp. 1-4.
    [57]. K.-Y. Lee, J.-T. Huang, H.-J. Hsu, M.-C. Chiu, T.-C. Tsai, and C.-K. Chen, “CMOS-MEMS piezoresisitve force sensor with scanning signal process circuit for vertical probe card,” Sens. Actuators A, vol. 160, pp. 22-28, 2010.
    [58]. C.-S. Li, L.-J. Hou, and S.-S. Li, “Advanced CMOS-MEMS resonator platform,” IEEE Electron Device Lett., vol. 33, pp. 272-274, 2012.
    [59]. Akustica, “AKU 230 digital CMOS MEMS microphone,” Feb., 2012, Rev.2.
    [60]. J. J. Neumann, Jr., and K. J. Gabriel, “A fully-integrated CMOS-MEMS audio microphone,” Proc. 12th Int. Conf. on Solid-State Sensors, Actuators and Microsystems, Boston, USA, June 8-12, 2003, pp. 230-233.
    [61]. J. Wu, G. K. Fedder, and L. R. Carley, “A low-noise low-offset capacitive sensing amplifier for a 50μg/ monolithic CMOS MEMS accelerometer,” IEEE J. Solid-State Circuits, vol. 39, pp. 772-730, 2004.
    [62]. H. Qu, and H. Xie, “Process development for CMOS-MEMS sensors with robust electrically isolated bulk silicon microstructures,” IEEE J. Microelectromech. Syst., vol. 16, pp. 1152-1161, 2007.
    [63]. C.-M. Sun, C. Wang, and W. Fang, “On the sensitivity improvement of CMOS capacitive accelerometer,” Sens. Actuators A, vol. 141, pp. 347-352, 2008.
    [64]. T.-H. Yen, M.-H. Tsai, C.-I. Chang, Y.-C. Liu, S.-S. Li, R. Chen, J.-C. Chiou, and W. Fang, “Improvement of CMOS-MEMS accelerometer using the symmetric layers stacking design,” in Proc. IEEE Sensors Conf., Limerick, Ireland, Oct., 2011, pp. 93-96.
    [65]. H. Xie, and G. K. Fedder, “A CMOS z-axis capacitive accelerometer with comb-finger sensing,” in Proc. 13th IEEE Int. Conf. Micro Electro Mech. Syst., Miyavaki, Japan, Jan., 2000, pp. 496-501.
    [66]. H. Lakdawala, and G. K. Fedder, “Temperature stabilization of CMOS capacitive accelerometers,” J. Micromech. Microeng., vol. 14, pp. 559-566, 2004.
    [67]. C. Wang, M.-H. Tsai, C.-M. Sun, and W. Fang, “A novel CMOS out-of-plane accelerometer with fully-differential gap-closing capacitance sensing electrodes,” J. Micromech. Microeng., vol. 17, pp. 1275-1280, 2007.
    [68]. M.-H. Tsai, C.-M. Sun, Y.-C. Liu, C. Wang, and W. Fang, “Design and fabrication of a metal wet-etching post-process for the improvement of CMOS-MEMS capacitive sensors,” J. Micromech. Microeng., vol. 19, 105017, 2009.
    [69]. H. Qu, D. Fang, and H. Xie, “A single-crystal silicon 3-axis CMOS-MEMS accelerometer,” in Proc. IEEE Sensors 2004, Vienna, Austria, Oct., 2004, pp. 661-664.
    [70]. C.-M. Sun, M.-H. Tsai, Y.-C. Liu, and W. Fang, “Implementation of a monolithic single proof-mass tri-axis accelerometer using CMOS-MEMS technique,” IEEE Trans. Electron Devices, vol. 57, pp. 1670-1679, 2010.
    [71]. M.-H. Tsai, Y.-C. Liu, C.-M. Sun, C. Wang, and W. Fang, “A CMOS-MEMS accelerometer with tri-axis sensing electrodes arrays,” EUROSENSORS XXIV, Linz, Austria, Sep., 2010, pp. 1083-1086.
    [72]. M.-H. Tsai, Y.-C. Liu, C.-M. Sun, C. Wang, C.-W. Cheng, and W. Fang, “A 400×400m2 3-axis CMOS-MEMS accelerometer with vertically integrated fully-differential sensing electrodes,” Proc. 16th Int. Conf. on Solid-State Sensors, Actuators and Microsystems, Beijing, China, Jun., 2011, pp. 811-814.
    [73]. M. Lemkin, and B. E. Boser, “A three-axis micromachined accelerometer with a CMOS position-sense interface and digital offset-trim electronics,” IEEE J. Solid-State Circuits, vol. 34, pp. 456-468, 1999.
    [74]. H. Qu, D. Fang, and H. Xie, “A monolithic CMOS-MEMS 3-axis accelerometer with a low-noise, low-power dual-chopper amplifier,” IEEE sensors J., vol. 8, pp. 1511-1518, 2008.
    [75]. H. Sun, D. Fang, K. Jia, F. Maarouf, H. Qu, and H. Xie, “A low-power low-noise dual-chopper amplifier for capacitive CMOS-MEMS accelerometers,” IEEE sensors J., vol. 14, pp. 925-973, 2011.
    [76]. S.-S. Tan, C.-Y. Liu, Y.-H. Chiu, and Klaus Y.-J. Hsu, “A new process for CMOS MEMS capacitive sensors with high sensitivity and their stability,” J. Micromech. Microeng., vol. 21, 035005, 2011.
    [77]. H.-H. Tsai, C.-F. Lin, Y.-Z. Juang, I.-L. Wang, Y.-C. Lin, R.-L Wang, and H.-Y. Lin, “Multiple type biosensors fabricated using the CMOS BioMEMS platform,” Sens. Actuator B, vol. 144, pp. 407-412, 2010.
    [78]. Y.-C. Liu, M.-H. Tsai, T.-L. Tang, and W. Fang, “Post-CMOS selective electroplating technique for the improvement of CMOS-MEMS accelerometers,” J. Micromech. Microeng., vol. 21, 105005, 2011.
    [79]. M. Paavola, M. Kamarainen, J. A. M. Jarvinen, M. Saukoski, M. Laiho, and K. A. I. Halonen, “A micropower interface ASIC for a capacitive 3-axis micro-accelerometer,” IEEE J. Solid-State Circuits, vol. 12, pp. 2651-2665, 2007.
    [80]. Y.-C. Liu, M.-H. Tsai, and W. Fang, “Pure oxide structure for temperature stabilization and performance enhancement of CMOS-MEMS accelerometer,” in Proc. 25th IEEE Int. Conf. Micro Electro Mech. Syst., Paris, France, Jan., 2012, pp. 591-594.
    [81]. Yole development, “Status of the MEMS industry new drivers: the path to new opportunities,” Semicon_Japan, 2011.
    [82]. Freescale semiconductor, “Accelerometer terminology guide,” May, 2007, Rev.0.
    [83]. Kionix, “Accelerometer errors,” May, 2007, AN 012.
    [84]. J. Wu, “Sensing and control electronics for low-mass low-capacitance MEMS accelerometer” Ph.D. dissertation, Dep. of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, 2002.
    [85]. B. V. Amini, “A mixed-signal low-noise sigma-delta interface IC for integrated sub-micro-gravity capacitive SOI accelerometers” Ph.D. dissertation, Dep. of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, 2006.
    [86]. J. Chae, H. Kulah, and K. Najafi, “An in-plane high-sensitivity, low-noise micro-g silicon accelerometer with CMOS readout circuitry,” IEEE J. Microelectromech. Syst., vol. 13, pp. 628-635, 2004.
    [87]. J. Chae, H. Kulah, and K. Najafi, “A CMOS-compatible high aspect ratio silicon-on-glass in-plane micro accelerometer,” J. Micromech. Microeng., vol. 15, pp. 336-345, 2005.
    [88]. B. V. Amini, and F. Ayazi, “A 2.5-v 14-bit CMOS SOI capacitive accelerometer,” IEEE J. Solid-State Circuits, vol. 38, pp. 2467-2476, 2004.
    [89]. R. Abdolvand, B. V. Amini, and F. Ayazi, “Sub-nicro-gravity in-plane accelerometer with reduced capacitive gaps and extra seismic mass,” IEEE J. Microelectromech. Syst., vol. 16, pp. 1036-1043, 2007.
    [90]. M. Tavakoli, and R. Sarpeshkar, “An offset-canceling low-noise lock-in for capacitive sensing,” IEEE J. Solid-State Circuits, vol. 38, pp. 244-253, 2003.
    [91]. A. M. Elshurafa, K. Khirallah, H. H. Tawfik, A. Emira, A. K. S. Abdel Aziz, and S. M. Sedky, “Nonlinear dynamics of spring softening and hardening in folded-MEMS comb drive resonators,” IEEE J. Microelectromech. Syst., vol. 20, pp. 943-958, 2011.
    [92]. R. R. Harrison, and C. Charles, “A low-power low noise CMOS amplifier for neural recording applications,” IEEE J. Solid-State Circuits, vol. 38, pp. 958-965, 2003.
    [93]. M. Yin, and M. Ghovanloo, “A low-noise preamplifier with adjustable gain and bandwidth for biopotential recording applications,” Proceedings of ISCAS, pp. 321-324, 2007.
    [94]. J. A. Geen, S. J. Sherman, J. F. Chang, and S. R. Lewis, “Single-chip surface micromachined integrated gyroscope with 50°/h Allen deviation,” IEEE J. Solid-State Circuits, vol. 37, pp. 1860-1866, 2002.
    [95]. C. Liu, Foundations of MEMS. 2nd ED, Prentice Hall, 2012.
    [96]. CoventorWare, Coventor, Inc.. http://www.coventor.com/
    [97]. W.-L. Huang, Z. Ren, Y.-W. Lin, H.-Y. Chen, J. Lahann, and C. T.-C. Nguyen, “Fully monolithic CMOS nickel micromechanical resonator oscillator,” in Proc. 21th IEEE Int. Conf. Micro Electro Mech. Syst., Tucson, AZ, Jan., 2008, pp. 13-17.
    [98]. H. Qu, “Development of DRIE CMOS-MEMS process and integrated accelerometers” Ph.D. dissertation, Dep. of Electrical and Computer Engineering, University of Florida, Miami, 2006.
    [99]. S.-H. Tseng, Michael S.-C. Lu, P.-C. Wu, Y.-C. Teng, H.-H. Tsai, and Y.-Z. Juang, “Implementation of a monolithic capacitive accelerometer in a wafer-level 0.18m CMOS MEMS process,” J. Micromech. Microeng., vol. 22, 055010, 2012.
    [100]. C.-C. Chang, S.-C. Hsieh, C.-H. Chen, C.-Y. Huang, C.-H. Yao, and C.-C. Lin, “Design of millimeter-wave MEMS-based reconfigurable front-end circuits using the standard CMOS technology,” J. Micromech. Microeng., vol. 21, 125011, 2011.
    [101]. Y.-J. Huang, T.-L. Chang, and H.-P. Chou, “Study of symmetric microstructures for CMOS multilayer residual stress,” Sens. Actuator A, vol. 150, pp.237-242, 2009.
    [102]. W. Fang, and J.A. Wickert, “Determining mean and gradient residual stresses in thin films using micromachined cantilevers,” J. Micromech. Microeng., vol. 6, pp 301-309, 1996.
    [103]. F. Fachin, S. A. Nikles, J. Dugundji, and B. L. Wardle, “Analytical extraction of residual stresses and gradients in MEMS structures with application to CMOS-layered materials,” J. Micromech. Microeng., vol. 21, 095017, 2011.
    [104]. Analog devices inc., “ADXL 335 data sheet,” Jan., 2010, Rev. B.
    [105]. STMicroelectronics, “L3G4200D data sheet,” Sep., 2010, Rev. 2.1.
    [106]. R. J. Baker, CMOS Circuit Design, Layout and Simulation. 2nd ED, Oxford University Press: Wiley -Interscience, 2005.
    [107]. C. C. Enz, G. C. Tems, “Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization,” Proc. IEEE, vol. 84, pp. 1584-1641, 1996.
    [108]. T. Kajita, U.-K. Moon, and G. C. Temes, “A two-chip interface for a MEMS accelerometer,” IEEE Trans. Instrum. Meas., vol. 51, pp. 853-858, 2002.
    [109]. D. A. Johns, and K. Martin, Analog Integrated Circuit Design. New York: Wiley, 1997.
    [110]. “Taiwan Semiconductor Manufacturing Company,” TSMC 0.35μm mixed signal 2P4M polyside 3.3V/5V spice model, ver. 2.7, 2007.
    [111]. J. Witte, K. A. Makinwa, and J. Huijsing, “A CMOS chopper offset-stabilized opamp,” IEEE J. Solid-State Circuits, vol. 42, pp. 1529-1535, 2007.
    [112]. C. Acar, and A. M. Shkel, “Experimental evaluation and comparative analysis of commercial variable-capacitance MEMS accelerometers,” J. Micromech. Microeng., vol. 13, pp. 634-645, 2003.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE