研究生: |
廖國軒 Liao, Kuo-Hsuan |
---|---|
論文名稱: |
適用於非二位元低密度奇偶檢查碼使用Max-Log-QSPA之高吞吐量基於籬柵分層解碼架構 A High-Throughput Trellis-Based Layered Decoding Architecture for Non-binary LDPC Codes Using Max-Log-QSPA |
指導教授: |
翁詠祿
Ueng, Yeong-Luh |
口試委員: |
王忠炫
Wang, Chung-Hsuan 楊家驤 Yang, Chia-Hsiang |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2012 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 60 |
中文關鍵詞: | 非二位元低密度奇偶檢查碼 |
外文關鍵詞: | Non-binary quasi-cylic low-density parity-check (QC-LDPC) codes, Q-ary Sum-Product algorithm |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
這篇論文呈現了一個非二位元低密度奇偶檢查碼高吞吐量解碼器架構,
是基於Log-QSPA演算法。首先,為了使檢查點(check node)可以有效率的運
算,我們針對了檢查點更新程序(check node processing)做了數學公式上運算
的重新排列,使得檢查點更新程序能夠用有效率的籬柵方法來表現,而在
籬柵配置方法中使用了向前訊息(forward message)以及向後訊息(backward
message)來做檢查點更新程序。為了增加解碼的吞吐量,使用了雙方向前向
後遞迴(bidirectional forward-backward recursion)。除此之外,分層式解碼也
被採用來增加解碼的收斂速度。最後,一個訊息上的壓縮技巧被使用來減
少硬體上儲存的空間要求,進一步來節省面積。在硬體呈現,使用了90-nm
CMOS 製程來實現一個在GF(32)下(837,726)的非二位元低密度奇偶檢查碼
解碼架構來呈現我們的想法。這個解碼器能夠達到233.53 Mbps的吞吐量當
使用時脈頻率為250 MHz的時候。比起以往的非二位元低密度奇偶檢查碼解
碼架構,在類似的錯誤率效能,此解碼器能夠達到最高的吞吐量。
This paper presents a high-throughput decoder architecture for non-binary
low-density parity-check (LDPC) codes, where the q-ary sum-product algo-
rithm (QSPA) in the log domain is considered. We reformulate the check-node
processing such that an efficient trellis-based implementation can be used,
where forward and backward recursions are involved. In order to increase the
decoding throughput, bidirectional forward-backward recursion is used. In ad-
dition, layered decoding is adopted to reduce the number of iterations based
on a given performance. Finally, a message compression technique is used to
reduce the storage requirements and hence the area. Using a 90-nm CMOS
process, a 32-ary (837,726) LDPC decoder was implemented to demonstrate
the proposed techniques and architecture. This decoder can achieve a through-
put of 233.53 Mbps at a clock frequency of 250 MHz based on the post-layout
results. Compared to the decoders presented in previous literature, the pro-
posed decoder can achieve the highest throughput based on a similar/better
error performance.
[1] R. G. Gallager, “Low-density parity-check codes,” IRE Trans. Inf. Theory,
vol. IT-8, pp. 21-28, Jan. 1962.
[2] Digital Video Broadcasting (DVB); Second Generation Framing Struc-
ture, Channel Coding and Modulation Systems for Broadcasting, Interac-
tive Services, New Gathering and Other Broadband Satellite Applications
2004.
[3] LDPC coding for OFDMA PHY. 802.16REVe Sponsor Ballot Recircula-
tion Comment 2004, IEEE C802.16e-04/141r2.
[4] Joint Proposal: High Throughput Extension to the 802.11 Standard:
PHY. IEEE P802.11 Wireless LANs 2006, IEEE 802.11-05/1102r4.
[5] M. C. Davey and D. J. C. MacKay, “Low-density parity check codes over
GF(q),” IEEE Commun. Lett., vol. 2, no. 6, pp. 165-167, Jun. 1998.
[6] H. Wymeersch, H. Steendam, and M. Moeneclaey, “Log-domain decoding
of LDPC codes over GF(q),” in Proc. IEEE ICC 2004, Paris, France, Jun.
20-24, 2004, pp. 772-776.
[7] L. Barnault and D. Declercq, “Fast decoding algorithm for LDPC over
GF(2q),” in Proc. IEEE ITW 2003, Paris, France, Mar. 31-Apr. 4, 2003,
pp. 70-73.
[8] H. Song and J. R. Cruz, “Reduced complexity decoding of Q-ary LDPC
codes for magnetic recording,” IEEE Trans. Magn., vol. 39, no. 2, pp.
1081-1087, Mar. 2003.
[9] A. Voicila, D. Declercq, F. Verdier, M. Fossorier, and P. Urard, “Low-
complexity decoding for non-binary LDPC codes in high order fields,”
IEEE Trans. on Commun., vol. 58, pp. 1365-1375, 2010.
[10] D. Declercq and M. Fossorier, “Decoding algorithms for nonbinary LDPC
codes over GF(q),” IEEE Trans. Commun., vol. 55, no. 4, pp. 633-643,
Apr. 2007.
[11] V. Savin, “Min-Max decoding for non-binary LDPC codes,” in Proc. IEEE
ISIT 2008, Toronto, Canada, Jul. 6-11, 2008, pp. 960-964.
[12] Y.-L. Wang, Y.-L. Ueng, C.-L. Peng, and C.-J. Yang, “Processing-task
arrangement for a low-density full-mode WiMAX LDPC codec,” IEEE
Trans. Circuits Syst. I, Reg. Papers, vol. 58, no. 2, pp. 415-428, Feb.
2011.
[13] M. M. Mansour and N. R. Shanbhag, “High-throughput LDPC decoder,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 11, no. 6, pp.
976-996, Feb. 2003.
[14] K. He, J. Sha, L. Li, and Z. Wang “High-throughput LDPC decoder,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 11, no. 6, pp.
976-996, Feb. 2003.
[15] C. Spagnol, E.Popovici, and W. Marnane, “Hardware implementation of
GF(2m) LDPC decoders,” IEEE Trans. Circuits Syst. I: Reg. Papers, vol.
56, no. 12, pp. 2609-2620, Dec. 2009.
[16] A. Voicila, D. Declereq, F. Verdier, M. Fossorier, and P. Urard, “Low
complexity low-memory EMS algorithm for non-binary LDPC codes,” in
Proc. IEEE Int. Conf. Commun., pp. 671-676, Jun. 2007.
[17] A. Voicila, D. Declercq, F. Verdier, M. Fossorier, and P. Urard, “Ar-
chitecture of a low-complexity non-binary LDPC decoder for high order
fields,” in Proc. IEEE ISCIT 2007, Sydney, Australia, Oct. 17-19, 2007,
pp. 1201-1206.
[18] J. Lin, J. Sha, Z.Wang, and L. Li, “An efficient VLSI architecture for non-
binary LDPC decoders,” IEEE. Trans. Circuits Syst. II : Express Briefs,
vol. 57, no. 1, pp. 51-55, Jan. 2010.
[19] J. Lin, J. Sha, Z.Wang, and L. Li, “Efficient decoder design for nonbinary
quasicyclic LDPC codes,” IEEE Trans. Circuits Syst. I: Reg. Papers, vol.
57, no. 5, pp. 1071-1082, May 2010.
[20] X. Chen and C.-L. Wang, “High-throughput efficient non-binary LDPC
decoder based on the simplified min-sum algorithm,” to appear in IEEE
Trans. Circuits Syst. I, Reg. Papers.
[21] C. Zhang and K. K. Parhi, “A network-efficient nonbinary QC-LDPC
decoder architecture,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 59,
no. 6, June 2012.
[22] X. Zhang and F. Cai, “Reduced-complexity decoder architecture for non-
binary LDPC codes,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
vol. pp, no. 99, pp. 1-10, Apr. 2010.
[23] Y.-L. Ueng, C.-Y. Leong, C.-J. Yang, C.-C. Cheng, K.-H. Liao, and S.-
W. Chen, “An efficient layered decoding architecture for nonbinary QC-
LDPC codes,” in IEEE Trans. Circuits Syst. I, Reg. Papers., vol. 59, pp.
385-398, Feb. 2012.
[24] C.-L. Wang, Z.-W. Li, and S.-H Yang “A new min-sum based decoding
algorithm for non-binary LDPC codes,” in Proc. 2012 International Conference
on Computing, Networking and Communications (ICNC 2012),
pp. 476-480, Jan. 2012.
[25] B. Zhou, J. Kang, S. Song, S. Lin, and K. Abdel-Ghaffar, “Construction
of non-binary quasi-cyclic LDPC codes by arrays and arrays dispersions,”
IEEE Trans. Commun., vol. 57, no. 6, pp. 1652-1662, Jun. 2009.
[26] William E. Ryan and Shu Lin, “Channel Codes: Classical and Modern,”
Cambridge University Press, 2009.