簡易檢索 / 詳目顯示

研究生: 盧凱玲
Lu, Kai-Ling
論文名稱: Modifications and Accuracy Evaluations of Vascular Space Occupancy Method for Measuring Absolute Cerebral Blood Volume
以血管空間佔據方法量測絕對腦血量的改進與準確性評估
指導教授: 王福年
Wang, Fu-Nien
口試委員: 劉鶴齡
吳文超
彭旭霞
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 55
中文關鍵詞: 絕對腦血容積血管空間佔據核磁共振假體模擬
外文關鍵詞: absolute Cerebral blood volume, vascular-space-occupancy MRI, phantom model
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 腦血量主要用以評估腦生理狀態和病理狀態,而腦血量的絕對定量可藉由血管空間佔據 (Vascular Space Occupancy, VASO) 磁振造影技術來完成。其原理是利用可縮短血液T1值的Gd對比劑打入生物體內,以反轉回復序列獲知其血液訊號抑制時間點打藥前後訊號的變化,將前後兩張影像相減後,根據參考訊號進一步絕對定量腦血量。

    前人利用EPI序列去計算絕對腦血量,容易造成影像扭曲和部分體積
    效應,為了解決此問題,在這個研究中我們採用RARE序列來計算絕對腦血量,並且進行參數的調整與準確性的評估。實驗的過程分成三個部分 : (1) 磁振造影參數最佳化的模擬,(2) 利用假體實驗比較不同參數所評估出的絕對腦血量準確性,(3) 以正常大鼠進行動物實驗。

    從假體結果得知,絕對腦血量的準確性於IR-RARE序列比單純使用RARE序列來的好,推測原因是IR可以抑制組織訊號所造成的干擾。而使用IR-RARE序列時,短TR(1600 ms)在假體上定量的絕對腦血量準確性較長TR(4000 ms)準確,且在動物實驗上測得的絕對腦血量數值也在之前文獻中的範圍內。因此我們相信此種方法對於血管空間佔據磁振造影技術將能有效的評估絕對腦血量。


    Cerebral blood volume (CBV) plays an important role for quantitative assessment of the brain physiology and pathophysiology state, which can be obtained with vascular-space-occupancy (VASO) MRI. One approach to determine absolute cerebral blood volume (aCBV) in humans is VASO MRI, which has been reported previously by Lu et al. The VASO MRI technique uses an inversion recovery pulse to null
    blood signal. Then, the signal difference before and after injection of T1 shortening Gd contrast agent can be used to calculate absolute CBV values with a reference signal.

    The aCBV was estimated by EPI sequence in previous reports, which may cause image distortion and partial volume effect. In order to overcome these problems, the RARE sequence was utilized in this study. Aiming to optimize the imaging parameters and evaluating the accuracy of VASO MRI, three experiments were preformed. First, we conducted computer simulations to estimate optimal imaging parameters. Second, phantom experiments were performed to assess the accuracy of aCBV with different parameters. Finally, the in vivo experiments were performed on a normal rat model.

    The results of the phantom experiments showed that the accuracy of aCBV value was higher for RARE sequence with IR preparation than without it. It is speculated that the interference of tissue signal is suppressed by the IR preparation. Compared with longer TR (4000ms), the aCBV estimated with shorter TR (1600 ms) was more accurate for IR-RARE sequence in phantom studies. In animal experiments, using the optimized parameters, the aCBV estimated with shorter TR is in good agreement with values reported in the literatures. Therefore, it is believed that our modified VASO MRI method will be beneficial for assessing aCBV.

    摘要 i ABSTRACT ii 致謝 iv CHAPTER 1 1 INTRODUCTION 1 CHAPTER 2 4 THEORY 4 2.1 THEORY OF ACBV ASSESSMENT USING VASO 5 2.2 TR AND TI OPTIMIZATION FOR SUPPRESSION 6 CHAPTER 3 10 MATERIALS AND METHODS 10 3.1 PHANTOM MODEL 10 3.1.1 Phantom preparation 10 3.1.2 Theory of phantom experiment 11 3.1.3 Phantom experimental procedures and parameters 12 3.1.4 Calculation of ideal CBV and FOV size 14 3.1.5 Calculation of blood-nulling TI 15 3.1.6 Data analysis of phantom experiment 16 3.2 ANIMAL EXPERIMENT 17 3.2.1 Animal preparation 17 3.2.2 Animal experimental procedures and parameters 18 3.2.3 Data analysis of animal experiment 19 3.2.4 Correcting the surface coil sensitivity 20 CHAPTER 4 22 RESULTS 22 4.1 PHANTOM EXPERIMENTS 22 4.1.1 Phantom images of different ideal CBV 22 4.1.2 Phantom images of IR-RARE sequence 23 4.1.3 Phantom results with optimum TI and blood-nulling TI using IR-RARE sequence 25 4.1.4 Phantom images of RARE sequence 29 4.1.5 Phantom results with RARE sequence 31 4.1.6 Phantom images of IR-RARE sequence with deviated long TI 34 4.1.7 Phantom results of IR-RARE sequence with deviated long TI 36 4.2 ANIMAL EXPERIMENT 40 4.2.1 Animal images of IR-RARE sequence 40 4.2.2 Location of ROI 42 4.2.3 Animal results 43 CHAPTER 5 45 DISCUSSION 45 5.1 RARE FOR VASO ACBV QUENTIFICATION 45 5.2 IR PULSE AND TI/TR OPTIMIZATION 47 5.3 ACBV ON RAT MODEL 49 CHAPTER 6 51 CONCLUSIONS 51 CHAPTER 7 53 REFERENCES 53

    1. Essig, M., et al., Assessment of brain metastases with dynamic susceptibility-weighted contrast-enhanced MR imaging: initial results. Radiology, 2003. 228(1): p. 193-9.
    2. Derdeyn, C.P., et al., Variability of cerebral blood volume and oxygen extraction: stages of cerebral haemodynamic impairment revisited. Brain, 2002. 125(Pt 3): p. 595-607.
    3. Harris, G., et al., Dynamic susceptibility contrast MRI of regional cerebral blood volume in Alzheimer’s disease. Am J Psychiatry, 1996. 153: p. 721-724.
    4. Kader, A. and W.L. Young, The effects of intracranial arteriovenous malformations on cerebral hemodynamics. Neurosurg Clin N Am, 1996. 7(4): p. 767-81.
    5. Lu, H., et al., Functional magnetic resonance imaging based on changes in vascular space occupancy. Magnetic Resonance in Medicine, 2003. 50(2): p. 263-274.
    6. Lu, H., et al., Multiple acquisitions with global inversion cycling (MAGIC): a multislice technique for vascular-space-occupancy dependent fMRI. Magn Reson Med, 2004. 51(1): p. 9-15.
    7. Donahue, M.J., et al., Theoretical and experimental investigation of the VASO contrast mechanism. Magn Reson Med, 2006. 56(6): p. 1261-73.
    8. Hoeffner, E.G., et al., Cerebral perfusion CT: technique and clinical applications. Radiology, 2004. 231(3): p. 632-44.
    9. Adam, J.F., et al., Absolute cerebral blood volume and blood flow measurements based on synchrotron radiation quantitative computed tomography. J Cereb Blood Flow Metab, 2003. 23(4): p. 499-512.
    10. Adam, J.F., C. Nemoz, and A. Bravin, High-resolution blood-brain barrier permeability and blood volume imaging using quantitative synchrotron radiation computed tomography: study on an F98 rat brain glioma. J Cereb Blood Flow Metab, 2005. 25: p. 145-445b.
    11. Sakai, F., et al., Regional cerebral blood volume and hematocrit measured in normal human volunteers by single-photon emission computed tomography. J Cereb Blood Flow Metab, 1985. 5(2): p. 207-13.
    12. Rempp, K.A., et al., Quantification of regional cerebral blood flow and
    54
    volume with dynamic susceptibility contrast-enhanced MR imaging. Radiology, 1994. 193(3): p. 637-41.
    13. Calamante, F., D.G. Gadian, and A. Connelly, Quantification of perfusion using bolus tracking magnetic resonance imaging in stroke: assumptions, limitations, and potential implications for clinical use. Stroke, 2002. 33(4): p. 1146-51.
    14. Moonen, C., et al., A fast gradientrecalled MRI technique with increased sensitivity to dynamic susceptibility effects. Magn Reson Med, 1992. 26: p. 184-189.
    15. Ostergaard, L., et al., High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part II: Experimental comparison and preliminary results. Magn Reson Med, 1996. 36(5): p. 726-36.
    16. Kuppusamy, K., et al., In vivo regional cerebral blood volume: quantitative assessment with 3D T1-weighted pre- and postcontrast MR imaging. Radiology, 1996. 201(1): p. 106-12.
    17. Hamberg, L.M., et al., Continuous assessment of relative cerebral blood volume in transient ischemia using steady state susceptibility-contrast MRI. Magn Reson Med, 1996. 35(2): p. 168-73.
    18. Schwarzbauer, C., et al., Quantitative magnetic resonance imaging of capillary water permeability and regional blood volume with an intravascular MR contrast agent. Magn Reson Med, 1997. 37(5): p. 769-77.
    19. Perles-Barbacaru, A.T. and H. Lahrech, A new Magnetic Resonance Imaging method for mapping the cerebral blood volume fraction: the rapid steady-state T1 method. Journal of Cerebral Blood Flow & Metabolism, 2007. 27(3): p. 618-631.
    20. Calamante, F., D.G. Gadian, and A. Connelly, Delay and dispersion effects in dynamic susceptibility contrast MRI: simulations using singular value decomposition. Magn Reson Med, 2000. 44(3): p. 466-73.
    21. Calamante, F., M. Morup, and L.K. Hansen, Defining a local arterial input function for perfusion MRI using independent component analysis. Magn Reson Med, 2004. 52(4): p. 789-97.
    22. Mouridsen, K., et al., Automatic selection of arterial input function using cluster analysis. Magn Reson Med, 2006. 55(3): p. 524-31.
    23. Lu, H., et al., Novel approach to the measurement of absolute cerebral blood volume using vascular-space-occupancy magnetic resonance imaging. Magn Reson Med, 2005. 54(6): p. 1403-11.
    24. Lu, H., et al., Quantitative measurement of spinal cord blood volume in humans using vascular-space-occupancy MRI. NMR in Biomedicine, 2008.
    21(3): p. 226-232.
    25. Uh, J., et al., On the measurement of absolute cerebral blood volume (CBV) using vascular-space-occupancy (VASO) MRI. Magn Reson Med, 2009. 61(3): p. 659-67.
    26. Uh, J., et al., Validation of VASO cerebral blood volume measurement with positron emission tomography. Magnetic resonance in medicine : official journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine, 2011. 65(3): p. 744-9.
    27. C, W.W., H.L. Liu, and J.H. Chen, Modeling dynamic cerebral blood volume changes during brain activation on the basis of the blood-nulled functional MRI signal. NMR Biomed, 2007. 20(7): p. 643-51.
    28. Wu, W.C., R.B. Buxton, and E.C. Wong, Vascular space occupancy weighted imaging with control of residual blood signal and higher contrast-to-noise ratio. IEEE Trans Med Imaging, 2007. 26(10): p. 1319-27.
    29. Haacke., E.M., et al., Magnetic Resonance Imaging Physical Principles and Sequence Design. Wiley-Liss 1999. Chapter 8.
    30. Chen., C.-C. and F.-N. Wang., Comparison of Cerebral Blood Volume measuring methods using MRI. National Tsing Hua University, 2009. Hsinchu.
    31. Morris, T.W., S.E. Ekholm, and L.I. Prentice, The effects of gadolinium-DTPA and -DOTA on neural tissue metabolism. Invest Radiol, 1991. 26(12): p. 1087-90.
    32. Lin, W., et al., Quantitative measurements of regional cerebral blood volume using MRI in rats: effects of arterial carbon dioxide tension and mannitol. Magn Reson Med, 1997. 38(3): p. 420-8.
    33. Lin, W., et al., Quantitative magnetic resonance imaging in experimental hypercapnia: improvement in the relation between changes in brain R2 and the oxygen saturation of venous blood after correction for changes in cerebral blood volume. J Cereb Blood Flow Metab, 1999. 19(8): p. 853-62.
    34. Dunn, J.F., et al., Monitoring angiogenesis in brain using steady-state quantification of DeltaR2 with MION infusion. Magn Reson Med, 2004. 51(1): p. 55-61.
    35. Pathak, A.P., et al., MR-derived cerebral blood volume maps: issues regarding histological validation and assessment of tumor angiogenesis. Magn Reson Med, 2001. 46(4): p. 735-47.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE