簡易檢索 / 詳目顯示

研究生: 邱建超
Chien-Chao Chiu
論文名稱: 以快速升降溫系統成長奈米碳管之研究
Synthesis of Carbon Nanotubes by Rapid Heating and Cooling System
指導教授: 戴念華
Nyan-Hwa Tai
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2005
畢業學年度: 94
語文別: 中文
論文頁數: 130
中文關鍵詞: 奈米碳管陣列轉印點對點成長單壁
外文關鍵詞: carbon nanotube, array, transferring, tip-to-tip growth, single -walled
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 以熱裂解化學氣相沈積法在快速升降溫真空系統中,於矽與二氧化矽基板上合成垂直奈米碳管陣列。其中二氧化矽除了有隔絕催化劑與矽基板表面的反應效果外,實驗中也觀察到有均勻的隔絕效果。利用此製程可將碳管陣列的長度成長至釐米的尺寸,也可任意成長出所需花樣的奈米浮雕。實驗中也利用創新的轉印技術,將在矽基板上所成長的碳管陣列轉印於Al2O3基板上,並提升其場發射性質,使其場發射電流甚至可達到325 mA/cm2,而其起始電場只需0.55 V/um。其中也探討場發射位置的結構與附著力對其性質的影響。
    利用點對點電極的設計,在外加電場下可成功地成長出跨接式的奈米碳管。改變其多層金屬鍍膜,更可成長出跨接式單壁奈米碳管。而電極區域所成長的面積隨與外加電場的關係,也藉由理論模擬作更進一步的探討。實驗中也比較了以多層膜與共濺鍍法製備試片而成長之單壁奈米碳管間的結構與直徑分佈的差異。另外,利用懸浮觸媒法所合成的單壁奈米碳管絨球,也可在真空腔體中以通入直流電源的方式,製作為奈米碳管燈泡。


    By using a rapid heating and cooling system (RHCS), several kinds of carbon nanotubes (CNTs) were synthesized in a thermal chemical vapor deposition (CVD) chamber. The process for grown positioning CNT and the applications of synthesized vertical CNTs array were discussed in this work.

    Vertically aligned CNTs were synthesized on a lithographically patterned silicon/silica substrate coated with an ultra thin iron film. The length of CNTs array could be grown up to 500 um and the profile was controlled by the thickness of catalytic film. To improve to field emission properties of CNTs array, a process for transferring CNT array from silicon wafer to alumina substrate coated with Ag-paste was proposed. A current density of 325 mA/cm2 was attained with an applied electric field of 2.4 V/um and the turn-on field was only 0.55 V/um. With this method, the adhesion between CNTs and substrate was enhanced and the current density and turn-on voltage were also improved. Effects of microstructure of the emitting sites at CNT tip on the current density were also studied.

    On the process for fabricating directional single-walled carbon nanotubes (SWNTs), an electric field was applied during the CVD process. The electric field affected significantly the CNTs direction during growth on multi-layered substrate. The sharp edge of Cr electrode yielded an enhanced electric field, which promoted the growth of SWNTs between the two tips. A theoretical modeling was proposed to predict the electric field, and the simulated pattern was quite consistent with the SWNT growth region around the tips.

    High quality and high purity SWNTs on Fe-Mo catalysts were synthesized by thermal chemical vapor deposition. The catalysts were prepared by using co-sputtering and multilayer pre-coating methods. Morphologies and microstructure of the synthesized SWNTs were examined. Peaks of the radial breathing mode (RBM) in the Raman spectrum demonstrated that highly pure SWNTs had been synthesized when the co-sputtered Fe-Mo catalysts were used. The CNT bulb was also made by the SWNTs filament which was synthesized by the floating catalyst method.

    總目錄 頁次 中文摘要 ….………………………….…………………………………I 英文摘要….………………………….………………………………..…II 誌謝………………………………………………………………………III 總目錄 ………………………………..………………..……………..…V 圖目錄………………………………………………………………...IX 表目錄…………………………………………………………………XV 第一章 緒論 ……………………………………………………………1 1.1簡介….……………………………………………………………1 1.2奈米碳管結構與性質……………………………………………2 1.3奈米碳管的應用…………………………………………………3 1.3.1 場發射之應用…………………..…………………………3 1.3.2 奈米溫度計……………………..…………………………5 1.3.3 奈米碳管燈泡…………………..…………………………6 1.3.4 奈米碳管氣體感測器…………..…………………………7 1.3.5 奈米碳管場效電晶體…………..…………………………7 第二章 文獻回顧....................................................................................16 2.1奈米碳管陣列之研究…………………………….......................16 2.1.1奈米碳管之成長機制..........................................................16 2.1.2奈米碳管陣列之成長..........................................................16 2.1.3奈米碳管陣列成長後之處理………….………………….21 2.2 跨接式奈米碳管成長…………………………….…................22 2.3 單壁奈米碳管之合成..............................................................23 第三章 成長垂直奈米碳管陣列之研究...............................................32 3.1 垂直奈米碳管陣列在矽與矽基板之成長..............................32 3.1.1 研究方法與目的............................................................32 3.1.2 實驗方法.....................................................................32 3.1.2.1試片的製備.........................................32 3.1.2.2 垂直式奈米碳管陣列的成長方法…..........33 3.1.3實驗結果與討論.............................................................34 3.2 以AFM法選區成長奈米碳管..............................37 3.2.1 實驗方法與目的………….…………………….……37 3.2.2 實驗結果與討論………….…………………….……38 3.3 垂直式奈米碳管陣列之選區成長………………….……39 3.3.1 實驗方法與目的………….…………………….……39 3.2.2 實驗結果與討論………….…………………….……40 第四章 垂直奈米碳管陣列轉印在氧化鋁基板的場發射.......................................................................................................65 4.1 研究方法與目的………………..…………....………….……..65 4.2 奈米碳管陣列轉印的轉印技術…………………………….....65 4.3 場發射量測…………………………………………………….67 4.4 結果與討論………………………………………………….....68 第五章 點對點成長跨接式奈米碳管…………………………………86 5.1 研究方法與目的……………………………………………….86 5.2 實驗方法……………………………………………………….86 5.2.1 試片的製備與跨接式碳管成長製程…………………..86 5.2.2 碳管的成長方法……………………………………......88 5.3 結果與討論…………………………………………………….88 第六章 單壁奈米碳管合成之研究…………………………………..106 6.1 以多層膜法與共濺鍍法製備催化劑合成高純度單壁奈米碳管…………………………………………………………......106 6.1.1 研究方法與目的………………………………………....106 6.1.2 實驗方法………………………………………………....106 6.1.3 結果與討論………………………………………………107 6.2 單壁奈米碳管燈絲…………………………………………...110 6.2.1 研究方法與目的…………………………………………110 6.2.2 實驗方法…………………………………………………111 6.2.2.1 單壁奈米碳管燈絲之合成方法……………….....111 6.2.2.2 單壁奈米碳管燈絲之實驗方法……………….....111 6.2.3 結果與討論………………………………………………112 第七章 結論…………………………………………………………..122 第八章 參考文獻……………………………………………………..124

    參考文獻

    1. H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, R. E. Smalley, “C60: Buckminsterfullerence,” Nature 347, 354 (1990).
    2. S. Iijima, “Helical microtubules of graphitic carbon,” Nature 354, 56 (1991).
    3. Rice University: Rick Smalley’s Group Home Page Image Gallery, http://cohesion.rice.edu/naturalsciences/smalley/emplibrary/allotropes.jpg, (2004).
    4. M. S. Dresselhaus, G. Dresselhaus, P. C. Eklund, Science of Fullerenes & Carbon Nanotubes, San Diego: Academic Press, (1996).
    5. M. S. Dresselhaus, G. Dresselhaus, and R. Saito, “Physics of carbon nanotubes,” Carbon 33, 883 (1995).
    6. M. L. Lieberman, C. R. Hills, C. J. Miglionico, Carbon 19, 633 (1971).
    7. M. Ishioka, T. Okada, K. Matsubara, “Preparation of vapor-grown carbon fibers in straight form by floating catalyst method in Linz-Donawitz converter gas,” Carbon 31, 123 (1993).
    8. H. Murakami, M. Hirakawa, C. Tanaka, H. Yamakawa,“Field emission from well-aligned, patterned carbon nanotube emitters,” Appl. Phys. Lett. 76, 1776 (2000).
    9. M. Yumura, S. Ohshima, K. Uchida, Y. Tasaka, Y. Kuriki, F. Ikazaki, “Synthesis and purification of multi-walled carbon nanotubes for field emitter applications,” Diam. Relat. Mater. 8, 785 (1999).
    10. J.-M. Bonard, T. Stockli, O. Noury, A. Chatelain, “Field emission from cylindrical carbon nanotube cathodes: Possibilities for luminescent tubes,” Appl. Phys. Lett. 78, 2775 (2001).
    11. W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin,I. T. Han,“Fully sealed, high-brighness carbon-nanotube field-emission display,” Appl. Phys. Lett. 75, 3129 (1999).
    12. Y. Gao, Y. Bando, “Carbon nanothermometer containing gallium,” Nature 451, 599 (2002).
    13. J. Wei, H. Zhu, D. Wu, B. Wei, “Carbon nanotube filament in household light bulbs,” Appl. Phys. Lett. 84, 4869 (2004).
    14. A. Modi, N. Koratkar, E. Lass, B. Wei, P. M. Ajayan, “Miniaturized gas ionization sensors using carbon nanotubes,” Nature 424, 171 (2003).
    15. L. Valentini, I. Armentano, J. M. Kenny, C. Cantalini, L. Lozzi, S. Santucci, “Sensors for sub-ppm NO2 gas detection based on carbon nanotube thin films,” Appl. Phys. Lett. 82, 961 (2003).
    16. S. Chopra, K. McGuire, N. Gothard, A. M. Rao, A. Pham, “Selective gas detection using a carbon nanotube sensor,” Appl. Phys. Lett. 83, 2280 (2003).
    17. S. J. Tans, A. R. M. Verschueren, C. Dekker, “Room-temperature transistor based on a single carbon nanotube,” Nature 393, 49 (1998).
    18. Z. Yao, H. W. C. Postma, L. Balents, C. Dekker, “Carbon nanotube intramolecular junctions,” Nature 402, 273 (1999).
    19. J. A. Misewish, R. Martel, P. Avouris, J. C. Tsang, S. Heinze, J. Tersoff, “Electrically induced optical emission from a carbon nanotube FET,” Science 300, 783 (2003).
    20. R. Martel, T. Schmidt, H.R. Shea, T. Hertel, P. Avouris, “Single- and multi-wall carbon nanotube field-effect transistors,” Appl. Phys. Lett. 73, 2447 (1998).
    21. S. B. Sinnott, R. Andrews, D. Qian, A. M. Rao, Z. Mao, E. C. Dickey, “Model of carbon nanotube growth through chemical vapor deposition,” Chem. Phys. Lett. 315, 25 (1999).
    22. C. J. Lee, J. Park, “Growth model of bamboo-shaped carbon nanotubes by thermal chemical vapor deposition,” Appl. Phys. Lett. 77, 3397 (2000).
    23. C. Bower, O. Zhou, W. Zhu, D. J. Werder, S. Jin, “Nucleation and growth of carbon nanotubes by microwave plasma chemical vapor deposition,” Appl. Phys. Lett. 77, 2767 (2000).
    24. Ph. Mauron, Ch. Emmenegger, A. Zuttel, Ch. Nutzenadel, P. Sudan, “Synthesis of oriented nanotube films by chemical vapor deposition,” Carbon 40, 1339 (2002).
    25. Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, P. Bush, M. P. Siegal, “Synthesis of large arrays of well-aligned carbon nanotubes on glass,” Science 282, 1105(1998).
    26. C. Bower, W. Zhu, S. Jin, O. Zhou, “Plasma-induced alignment of carbon nanotube,” Appl. Phys. Lett. 77, 830 (2000).
    27. Y. Y. Wei, G. Eres, V. I. Merkulov, D. H. Lowndes, “Effect of catalyst film thickness on carbon nanotube growth by selective area chemical vapor deposition,” Appl. Phys. Lett. 78, 1394 (2001).
    28. J. S. Suha, J. S. Lee, “Highly ordered two-dimensional carbon nanotube arrays,” Appl. Phys. Lett. 75, 2047 (1999).
    29. J. Li, C. Papadopoulos, J. M. Xu, M. Moskovits, “Highly-ordered carbon nanotube arrays for electronics applications,” Appl. Phys. Lett. 75, 367 (1999).
    30. Z. W. Pan, S. S. Xie, B. H. Chang, C. Y. Wang, L. Lu, W. Liu, “Very long carbon nanotubes,” Nature 394, 631 (1998).
    31. B. Q. Wei, R. Vajtai, Y. Jung, J. Ward, R. Zhang, G. Ramanath, “Assembly of highly organized carbon nanotube architecture by chemical vapor deposition,” Chem. Mater. 15, 1598 (2003).
    32. G. Eres, A. A. Puretzky, D. B. Geohegan, H. Cui, “In situ control of the catalyst efficiency in chemical vapor deposition of vertically aligned carbon nanotubes on predeposited metal catalyst films,” Appl. Phys. Lett. 84, 1759 (2004).
    33. D. B. Geohegan, A. A. puretzky, I. N. Ivanov, S. Jesse, G. Eres, “In situ growth rate measurements and length control during chemical vapor deposition of vertical aligned multiwall carbon nanotubes,” Appl. Phys. Lett. 83, 1851 (2003).
    34. H. T. Ng, B. Chen, J. E. Koehne, A. M. Cassell, J. Li, J. Han, “Growth of carbon nanotubes: A combinatorial method to study the effects of catalysts and underlayers,” J. Phys. Chem. B 107, 8484 (2003).
    35. A. Cao, P. M. Ajayan, G. Ramanath, R. Baskaran, K. Turner, “Silicon oxide thickness-dependent growth of carbon nanotubes,” Appl. Phys. Lett. 84, 109 (2004).
    36. X. Zhang, A. Cao, B. Wei, Y. Li, J. Wei, C. Xu, “Rapid growth of well-aligned carbon nanotube arrays,” Chem. Phys. Lett. 362, 285 (2002).
    37. V. Kayastha, Y. K. Yap, S. Dimovski, Y. Gogotsi, “Controlling dissociative adsorption for effective growth of carbon nanotubes,” Appl. Phys. Lett. 85, 3265 (2004).
    38. A. Cao, X. Zhang, C. Xu, J. Liang, D. Wu, X. Chen, “Grapevine-like growth of single walled carbon nanotubes among vertically aligned multiwalled nanotube arrays,” Appl. Phys. Lett. 79, 12529 (2001).
    39. W. D. Zhang, Y. Wen, W. C. Tjiu, G. Q. Xu, L. M. Gan, “Growth of vertically aligned carbon-nanotube array on large area of quartz plates by chemical vapor deposition,” Appl. Phys. A 74, 419 (2002).
    40. Y. T. Lee, J. Park, Y. S. Choi, H. Ryu, H. J. Lee, “Temperature- dependent growth of vertically aligned carbon nanotubes in the range 800-1100 °C,” J. Phys. Chem. B 106, 7614 (2002).
    41. C. Singh, M. S. P. Shaffer, A. H. Windle, “Production of controlled architectures of aligned carbon nanotubes by an injection chemical vapour deposition method,” Carbon 41, 359 (2003).
    42. H. M. Christen, A. A. Puretzky, H. Cui, K. Belay, P. H. Fleming, “Rapid Growth of Long, Vertically Aligned Carbon Nanotubes through Efficient Catalyst Optimization Using Metal Film Gradients,” Nano Lett. 4, 1939 (2004).
    43. L. M. Ericson, H. Fan, H. Peng, V. A. Davis, W. Zhou, J. Sulpizio, “Macroscopic, Neat, Single-Walled Carbon Nanotube Fiber,” Science 305, 1447 (2004).
    44. Y.-L. Li, I. A. Kinloch, A. H. Windle, “Direct Spinning of Carbon Nanotube Fibers from Chemical Vapor Deposition Synthesis,” Science 304, 276 (2004).
    45. Y.-L. Li, I. A. Kinloch, A. H. Windle, “Direct Spinning of Carbon Nanotube Fibers from Chemical Vapor Deposition Synthesis,” Science 304, 276 (2004).
    46. M. Zhang, K. R. Atkinson, R. H. Baughman1, “Multifunctional Carbon Nanotube Yarns by Downsizing an Ancient Technology,” Science 309, 1215 (2005).
    47. J. Kong, H. T. Soh, A. M. Cassell, C. F. Quate, H. Dai, “Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers,” Nature 395, 878 (1998).
    48. H. T. Soh, C. F. Quate, A. F. Morpurgo, C. M. Marcus, J. Kong, H. Dai, “Integrated nanotube circuits: Controlled growth and ohmic contacting of single-walled carbon nanotubes,” Appl. Phys. Lett. 75, 627 (1998).
    49. Y. Zhang, A. Chang, J. Cao, Q. Wang, W. Kim, H. Dai, “Electric-field-directed growth of aligned single-walled carbon nanotubes,” Appl. Phys. Lett. 79, 3155 (2001).
    50. N. R. Franklin, Q. Wang, T. W. Tombler, A. Javey, M. Shim, H. Dai, “Integration of suspended carbon nanotube arrays into electronic devices and electromechanical,” Appl. Phys. Lett. 81, 913 (2002).
    51. A. Ural, Y. Li, H. Dai, “Electric-field-aligned growth of single-walled carbon nanotubes,” Appl. Phys. Lett. 81, 3464 (2002).
    52. R. G. Lacerda, A. S. Teh, M. H. Yang, K. B. K. Teo, N. L. Rupesinghe, S. H. Dalal, “Growth of high-quality single-wall carbon nanotubes without amorphous carbon formation,” Appl. Phys. Lett. 84, 269 (2004).
    53. R. Seidel, G. S. Duesberg, E. Unger, A. P. Graham, M. Liebau, F. Kreupl, “Chemical vapor deposition growth of single-walled carbon nanotubes at 600 °C and a simple growth model,” J. Phys. Chem. B 108, 1888 (2004).
    54. Y. J. Yoon, J. C. Bae, H. K. Baik, S. J. Cho, S. J. Lee, K. M. Song, “Growth control of single and multi-walled carbon nanotubes by thin film catalyst,” Chem. Phys. Lett. 366, 109 (2002).
    55. R. Y. Zhang, I. Amlani, J. Baker, J. Tresek, R. K. Tsui, “Chemical vapor deposition of single-walled carbon nanotubes using ultrathin Ni/Al film as catalyst,” Nano Lett. 3, 731 (2003).
    56. H. Cui, G. Eres, J.Y. Howe, A. Puretkzy, M. Varela, D.B. Geohegan, D.H. Lowndes, “Growth behavior of carbon nanotubes on multilayered metal catalyst film in chemical vapor deposition,” Chem. Phys. Lett. 374, 222 (2003).
    57. R. Seidel, M. Liebau, G. S. Duesberg, F. Kreupl, E. Unger, A. P. Graham, “In-situ contacted single-walled carbon nanotubes and contact improvement by electroless deposition,” Nano Lett. 3, 965 (2003).
    58. L. Delzent, B. Chen, A. Cassell, R. Stevens, C. Nguyen, M. Meyyappan, “Multilayered metal catalysts for controlling the density of single-walled carbon nanotube growth,” Chem. Phys. Lett. 348, 368, (2001).
    59. T. Ikuno, M. Katayama, N. Yamauchi, W. Wongwiriyapan, S. Honda, K. Oura, “Selective growth of straight carbon nanotubes by low-pressure thermal chemical vapor deposition,” Jpn. J. Appl. Phys. 43, 860 (2004).
    60. Y. Homma, Y. Kobayashi, T. Ogino, T. Yamashita, “Growth of suspended carbon nanotube networks on 100-nm-scale silicon pillars,” Appl. Phys. Lett. 81, 2261 (2002).
    61. R. Zhang, R. K. Tsui, J. Tresek, A. M. Rawlett, I. Amlani, T. Hopson, “Formation of single-walled carbon nanotubes via reduced-pressure thermal chemical vapor deposition,” J. Phys. Chem. B 107, 3137 (2003).
    62. A. M. Cassell, J. A. Raymakers, J. Kong, H. Dai, “Large scale CVD synthesis of single-walled carbon nanotube,” J. Phys. Chem. B 103, 6484 (1999).
    63. S. Tang, Z. Zhong, Z. Xiong, L. Sun, L. Liu, J. Lin, “Controlled growth of single-walled carbon nanotubes by catalytic decomposition of CH4 over Mo/Co/MgO catalysts,” Chem. Phys. Lett. 350, 19 (2001).
    64. S. C. Lyu, B. C. Liu, S. H. Lee, C. Y. Park, H. K. Kang, C. W. Yang, “Large-scale synthesis of high-quality single-walled carbon nanotubes by catalytic decomposition of ethylene,” J. Phys. Chem. B 108, 1613 (2004).
    65. B. C. Liu, S. C. Lyu, S. I. Jung, H. K. Kang, C. W. Yang, J. W. Park, “Single-walled carbon nanotubes produced by catalytic cgemical vapor deposition of acetylene over Fe-Mo/MgO catalyst,” Chem. Phys. Lett. 383, 104 (2004).
    66. Y. J. Yoona, J. C. Baea, H. K. Baika, S. J. Chob, S. J. Leec, K. M. Song, “Nucleation and growth control of carbon nanotubes in CVD process,” Phys. B 323, 318 (2002).
    67. R. H. Fowler, L. Nordheim, Proc. Roy. Soc. Lond. A119, 173 (1928).
    68. W. Zhu, C. Bower, O. Zhou, G. Kochanski, S. Jin, “Large current density from carbon nanotube field emitters,” Appl. Phys. Lett. 75, 873 (1999).
    69. X. Xu, G. R. Brandes, “A method for fabricating large-area, patterned, carbon nanotube field emitters,” Appl. Phys. Lett. 74, 2549 (1999).
    70. M. S. Dresselhaus, P. C. Eklund, Adv. Phys. 49, 705 (2000).
    71. A. M. Rao, A. Jorio, M. A. Pimenta, M. S. S. Dantas, R. Saito, G. Dresselhaus, “Polarized raman study of aligned multiwalled carbon nanotubes,” Phys. Rev. lett. 84, 1820 (2000).
    72. A.Jorio,R.Saito, J. H. Hafner, C. M. Lieber, M. Hunter, T. McClure, G. Dresselhaus, “Structural (n,m) Determination of Isolated Single-Wall Carbon Nanotubes by Resonant Raman Scattering,” Phys. Rev. Lett. 86, 1118 (2001).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE