簡易檢索 / 詳目顯示

研究生: 王家偉
Wang, Chia-Wei
論文名稱: 陽極複合沉積釕系氧化物電極材料於超級電容器之應用
Anodic Composite Deposition of Ruthenium Oxide-Based Electrode Materials for Supercapacitors
指導教授: 胡啟章
Hu, Chi-Chang
口試委員: 馬振基
胡啟章
鄧熙聖
董瑞安
曾堯宣
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 142
中文關鍵詞: 超級電容器複合電鍍釕氧化物
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討利用陽極複合沉積法製備釕氧化物-鈦氧化物複合電極以及釕氧化物-石墨烯/奈米碳管複合電極於超級電容器之應用。經由改變成長溫度與複合鍍液組成比例對釕氧化物-鈦氧化物複合電極作系統性的研究;並先以微波輔助水熱法(microwave-assisted hydrothermal elimination method)製備還原程度不同之石墨烯來探討陽極複合沉積上機制的差異後,選擇添加高孔洞結構、高比表面積之石墨烯/奈米碳管,來觀察材料以及電化學上的特性。在材料分析方面,經由掃描式電子顯微鏡(scanning electron microscopy,SEM)來觀察表面型態、能量散射光譜儀(Energy Dispersive Spectrometer,EDS)分析組成、拉曼光譜(Raman spectroscopy)作定性分析、X光繞射儀(X-ray diffraction,XRD)觀察其結構上的變化、穿透式電子顯微鏡(transmission electron microscopy,TEM)分析其微結構以及利用熱分析儀(Thermogravimetric analysis, TGA)研究複合電極之重量損失與其水含量。經由循環伏安行為、可逆性測試以及不同掃描速率之影響來觀察其電化學的特性。
    首先發現加入鈦氧化物於鍍液中,並不會影響釕氧化物的沉積行為。當成長溫度在35 oC時,釕氧化物成長速率非常慢且不連續;而當成長溫度於65 oC 時,會因釕氧化物成長太快而有氧化物的掉落,故以50 oC為氧化物最佳的成長溫度。接著由電極剖面(cross section) EDS分析結果發現,可藉由改變溶液組成進而控制複合氧化物中鈦氧化物含量;且皆具有粗糙的表面型態,符合熱分析儀結果。隨著鍍層中鈦氧化物含量的增加,整體比電容呈現逐漸下降的趨勢,當鈦氧化物含量為23 wt%時,電極整體電容量可達最大值約500 F/g;又當鈦氧化物含量為36 wt%時,可達最高釕氧化物的利用率為773 F/g。
    之後添加0.9 g/L的石墨烯/奈米碳管溶液於鍍液中,同樣利用陽極複合沉積法製備釕氧化物-石墨烯/奈米碳管電極。其表面形態為不規則3D片狀排列之蓬鬆結構,由元素分佈分析得知,釕氧化物與石墨烯/奈米碳管是整體性且連續性的沉積。此外,以TEM確定此複合材料具有奈米等級的混合程度;最後以TGA間接推斷其結構具高度孔洞性。經熱處理效應之電化學分析,得知以150 oC為熱處理溫度時釕氧化物-石墨烯/奈米碳管電極具最理想之電容行為,其比電容值達973 Fg-1,且其掃描速率與峰電流呈線性關係,而電容保持率為最高約為60.5%。故釕氧化物-石墨烯/奈米碳管電極經150 oC熱處理 2小時後可達最佳之儲能性質,比能量密度與比功率密度分別達144.6 Whkg-1與157.5 kWkg-1。


    目錄 第一章 緒論 1 1-1超級電容器簡介與分類 1 1-2超級電容器的量測 5 1-3提高釕氧化物利用率之文獻回顧 11 1-4複合電鍍 15 1-5研究動機與本文大綱 17 第二章 實驗方法與步驟 19 2-1儀器與藥品 19 2-2電極前處理與鍍液製備以及實驗流程 21 2-3電化學分析 25 2-3-1循環伏安法(Cyclic Voltammetry) 27 2-3-2可逆性實驗(Reversibility) 28 2-3-3不同掃描速率之影響(Scan Rate Effect) 28 第三章 陽極複合沉積釕氧化物-鈦氧化物之材料分析與電容特性 29 3-1前言 29 3-2成長溫度對複合電鍍之影響 31 3-2-1不同成長溫度之行為探討 31 3-2-3不同成長溫度所得釕氧化物-鈦氧化物之表面型態 35 3-2-4不同成長溫度所得釕氧化物-鈦氧化物之電化學行為 37 3-3複合氧化物之鈦氧化物含量的影響 39 3-3-1不同鈦含量之複合氧化物的材料分析 39 3-3-1-1不同鈦含量之複合氧化物的剖面形態與組成分析 40 3-3-1-2不同鈦含量之複合氧化物的表面形態 43 3-3-1-3不同鈦含量之複合氧化物的水含量 45 3-3-2不同鈦含量之複合氧化物的電化學分析 47 3-3-2-1不同鈦含量之複合氧化物的循環伏安行為 47 3-3-2-2不同鈦含量之複合氧化物的可逆性測試 51 3-3-2-3不同鈦含量之複合氧化物在不同掃描速率下之影響 52 3-3-2-4不同濃度電解液對複合氧化物(鈦氧化物含量為36wt%)之影響 56 3-3-2-4交流阻抗頻譜分析 59 3-4結論 62 第四章 陽極複合沉積釕氧化物-石墨烯/奈米碳管於超級電容器之應用 63 4-1前言 63 4-2石墨烯還原程度對陽極複合沉積釕氧化物/石墨烯電極之成長機制與電容行為之影響 65 4-3複合釕氧化物-石墨烯/奈米碳管電極之製備 73 4-4複合釕氧化物-石墨烯/奈米碳管之材料分析 75 4-4-1複合釕氧化物-石墨烯/奈米碳管之表面形態、剖面形態與組成分佈 76 4-4-2複合釕氧化物-石墨烯/奈米碳管之定性分析 81 4-4-3複合釕氧化物-石墨烯/奈米碳管之結晶性與微結構 83 4-5複合釕氧化物-石墨烯/奈米碳管之電化學分析 89 4-5-1複合釕氧化物-石墨烯/奈米碳管之循環伏安行為 89 4-5-2複合釕氧化物-石墨烯/奈米碳管之可逆性測試 91 4-5-3複合釕氧化物-石墨烯/奈米碳管在不同掃描速率之影響 93 4-5結論 98 第五章 熱處理於複合釕氧化物-石墨烯/奈米碳管電極之材料特性與電容表現之影響 101 5-1前言 101 5-2複合釕氧化物-石墨烯/奈米碳管經由不同熱處理溫度之材料分析 101 5-2-1複合釕氧化物-石墨烯/奈米碳管經由不同熱處理溫度之表面形態 102 5-2-2複合釕氧化物-石墨烯/奈米碳管經由不同熱處理溫度之定性分析 104 5-2-3複合釕氧化物-石墨烯/奈米碳管經由不同熱處理溫度之結晶性、粒徑大小以及結構變化 106 5-3複合釕氧化物-石墨烯/奈米碳管經由不同熱處理溫度之電化學分析 111 5-3-1複合釕氧化物-石墨烯/奈米碳管經由不同熱處理溫度之循環伏安行為 111 5-3-2複合釕氧化物-石墨烯/奈米碳管經由不同熱處理溫度之可逆性測試 114 5-3-3複合釕氧化物-石墨烯/奈米碳管經由不同熱處理條件之不同掃描速率之影響 116 5-4釕氧化物電極與複合釕氧化物-石墨烯/奈米碳管電極之討論 121 5-5結論 124 第六章 總結與建議 126 6-1總結 126 6-2建議與展望 128 參考文獻 129

    1. B. E. Conway, “Electrochemical Supercapacitors, Scientific Fundamentals and Technological Applications”, Kluwer-Plenum, New York (1999).
    2. M. Winter, R. J. Brodd, “What Are Batteries, Fuel Cells, and Supercapacitors”, Chem. Rev., 104, 4245-4269 (2004).
    3. R. Kotz, M. Carlen, “Principles and applications of electrochemical capacitors”, Electrochim. Acta, 45, 2483-2498 (2000).
    4. A. Burke, “Ultracapacitors: why, how, and where is the technology”, J. Power Sources, 91, 37-50 (2000).
    5. R. A. Huggins, “Supercapacitors and electrochemical pulse”, Solid State Ionics, 134, 179-195 (2000).
    6. 黃耀煌, “循環伏安法製備之含水釕氧化物於電化學電容器之應用”, 國立中正大學化工研究所碩士論文, 1999.
    7. E. Frackowiak, Franc﹐ois Be’guin, “Carbon materials for the electrochemical storage of energy in capacitors”, Carbon, 39, 937-950 (2001).
    8. R. Z. Ma, J. Liang, B. Q. Wei, B. Zhang, C. L. Xu, D. H. Wu, “Study of electrochemical capacitors utilizing carbon nanotube electrodes”, J. Power Sources, 84, 126–129 (1999).
    9. C. Niu, E. K. Sichel, R. Hoch, D. Moy, H. Tennent, “High power electrochemical capacitors based on carbon nanotube electrodes”, Appl. Phys. Lett., 70, 1480-1482 (1997).
    10. N. L. Wu, S. Y. Wang, C. Y. Han, D. S. Wu, L. R. Shiue, “Electrochemical capacitor of magnetic in aqueous electrolytes”, J. Power Sources, 113, 173-178 (2003).
    11. C. C. Hu and T. W. Tsou, “Ideally Capacitive Behavior of Hydrous Manganese Oxide Prepared by Anodic Deposition”, Electrochem. Comm., 4, 105-109 (2002).
    12. H. Y. Lee, J. B. Goodenough, “Ideal Supercapacitor Behavior of Amorphous V2O5•nH2O in Potassium Chloride (KCl) Aqueous Solution”, J. Solid State Chemistry, 148, 81-84 (1999).
    13. C. Lin, J. A. Ritter, B. N. Popov, “Characterization of Sol-Gel-Derived Cobalt Oxide Xerogels as Electrochemical Capacitors”, J. Electrochem. Soc., 145, 4097-4103 (1998).
    14. J. P. Zheng, P. J. Cygan, T. R.Jow, “Hydrous Ruthenium Oxide as an Electrode Material for Electrochemical Capacitors”, J. Electrochem. Soc., 142, 2699-2703 (1995).
    15. V. Gupta, N. Miura, “Electrochemically Deposited Polyaniline Nanowire's Network - A High-Performance Electrode Material for Redox Supercapacitor”, Electrochem. Solid State Lett., 8, A630-A632 (2005).
    16. S. Ghosh, O. Inganas, “Conducting Polymer Hydrogels as 3D Electrode: Applications for Supercapacitors”, Adv. Mater., 11, 1214-1218 (1999).
    17. T. C. Wen, C. C. Hu, “Hydrogen and Oxygen Evolutions on Ru-Ir Binary Oxides”, J. Electrochem. Soc., 139, 2158 (1992).
    18. S. Trasatti, “Physical Electrochemistry of Ceramic Oxides”, Electrochim. Acta, 36, 225-241 (1991).
    19. S. Hadzi-Jordanov, H. Angerstein-Kozlowska, M. Vukovic and B. E. Conway, “Reversibility and Growth Behavior of Surface Oxide Films at Ruthenium Electrode”, J. Electrochem. Soc., 125, 1471-1480 (1978).
    20. J. P. Zheng and T. R. jow, “A New Charge Strage Mechanism for Electrochemical Capacitors,” J. Electrochem. Soc., 142, L6-L8 (1995).
    21. C. C. Hu, W. C. Chen, K. H. Chang, “How to Achieve Maximum Utilization of Hydrous Ruthenium Oxide for Supercapacitors”, J. Electrochem. Soc., 151, A281-A291 (2004).
    22. D. A. McKeown, P. L. Hagans, L. P. L. Carette, A. E. Russell, K. E. Swider, D. R. Rolison, “Structure of Hydrous Ruthenium Oxides: Implications for Charge Storage”, J. Phys. Chem. B, 103, 4825-4832 (1999).
    23. R. Fu, Z. Ma, J. P. Zheng, “Proton NMR and Dynamic Studies of Hydrous Ruthenium Oxide”, J. Phys. Chem. B, 106, 3592-3596 (2002).
    24. W. Sugimoto, H. Iwata, K. Yokoshima, Y. Murakami, Y. Takasu, “Proton and Electron Conductivity in Hydrous Ruthenium Oxides Evaluated by Electrochemical Impedance Spectroscopy: The Origin of Large Capacitance”, J. Phys. Chem. B, 109, 7330-7338 (2005).
    25. W. Domwski, T. Egami, K. E. Swider-Lyons, C. T. Love, D. R. Rolison, “Local Atomic Structure and Conduction Mechanism of Nanocrystalline Hydrous RuO2 from X-ray Scattering”, J. Phys. Chem. B, 106, 12677-12683 (2002).
    26. J. P. Zheng, “Ruthenium Oxide-Carbon Composite Electrodes for Electrochemical Capacitors”, Electrochem. Solid State Lett., 2, 359-361 (1999).
    27. K. H. Chang, C. C. Hu, “Coalescence inhibition of hydrous RuO2 crystalline prepared by a hydrothermal method”, Appl. Phys. Lett., 88, 193102 (2006).
    28. C. R. Sides, C. R. Martin, “Nanostructured Electrodes and the Low-Temperature Performance of Li-Ion Batteries”, Adv. Mater., 17, 125 (2005).
    29. G. Che, B. B. Lakshmi, E. R. Fisher, C. R. Martin, “Carbon nanotube membranes for electrochemical energy storage and production”, Nature, 393, 346 (1998).
    30. C. Lin, J. A. Ritter, B. N. Popov, “Development of Carbon-Metal Supercapacitors from Sol-Gel Derived Carbon-Ruthenium Xerogels”, J. Electrochem. Soc., 146, 3155-3160 (1999).
    31. J. Zhang, D. Jiang, B. Chen, J. Zhu, L. Jiang, H. Fang, “Preparation and Electrochemistry of Hydrous Ruthenium Oxide/Active Carbon Electrode Materials for Supercapacior”, J. Electrochem. Soc., 148, A1362-A1367 (2001).
    32. M. Ramani, B. S. Haran, R. E. White, B. N. Popov, L. Arsov, “Studies on activated carbon capacitor materials loaded with different amounts of ruthenium oxide”, J. Power Sources, 93, 209-214 (2001).
    33. V. Panic, T. Vidakovic, S. Gojkovic, A. Dekanski, S. Milonjic, B. Nikolic, “The properties of carbon-supported hydrous ruthenium oxide obtained from RuOxHy Sol”, Electrochim. Acta, 48, 3805-3813 (2003).
    34. C. C. Hu, W. C. Chen, “Effects of substrates on the capacitive performance of RuOx•nH2O and activated carbon-RuOx electrodes for supercapacitors”, Electrochim. Acta, 49, 3469-3477 (2004).
    35. I. H. Kim, J. H. Kim, K. B. Kim, “Electrochemical Characterization of Electrochemically Prepared Ruthenium Oxide/Carbon Nanotube Electrode for Supercapacitor Application”, Electrochem. Solid-State Lett., 8, A369-A372 (2005).
    36. I. H. Kim, J. H. Kim, Y. H. Lee, K. B. Kim, “Synthesis and Characterization of Electrochemically Prepared Ruthenium Oxide on Carbon Nanaotube Film Substrate for Supercapacitor Applications”, J. Electrochem. Soc., 152, A2170-A2178 (2005).
    37. G. L. Cui, X. H. Zhou, L. J. Zhi, A. Thomas, K. Mullen, “Carbon/nanostructured Ru composites as electrodes for supercapacitors”, New Carbon Materials, 22, 302-306 (2007).
    38. X. J. Liu, T. Osaka, “Properties of electric double-layer capacitors with various polymer gel electrolytes”, J. Electrochem. Soc., 144, L3066-3071 (1997).
    39. H. Probstle, C. Schmitt, J. Fricke, “Button cell supercapacitors with monolithic carbon aerogels”, J. Power Sources, 105, 189-194 (2002).
    40. W. Sugimoto, T. Kizaki, K. Yokoshima, Y. Murakami, Y. Takasu, “Evaluation of the pseudocapacitor in RuO2 with a RuO2/GC thin film electrode”, Electrochim. Acta, 49, 313-320 (2004).
    41. C. C. Hu, Y. H. Huang, K. H. Chang, “Annealing effects on the physicochemical characteristics of hydrous ruthenium and ruthenium-iridium oxides for electrochemical supercapacitors”, J. Power Sources, 108, 117-127 (2002).
    42. C. C. Hu, K. H. Chang, “Cyclic voltammetric deposition of hydrous ruthenium oxide for electrochemical capacitor: effects of codepositing iridium oxide”, Electrochim. Acta, 45, 2685-2696 (2000).
    43. C. C. Wang, C. C. Hu, “Electrochemical and Textural Characteristics of (Ru-Sn)Ox•nH2O for Supercapacitors”, J. Electrochem. Soc., 152, A370-A376 (2005).
    44. C. C. Wang, C. C. Hu, “Electrochemical and textural characterization of binary Ru-Sn oxides synthesis under mild hydrothermal conditions for supercapacitors”, Electrochim. Acta, 50, 2573-2581 (2005).
    45. K. H. Chang, C. C. Hu, “Hydrothermal synthesis of binary Ru-Ti oxides with excellent performances for supercapacitors”, Electrochim. Acta, 52, 1749-1757 (2006).
    46. C. C. Hu, C. C. Wang, K. H. Chang, “A comparison of the capacitive behavior for sol-gel-derived and co-annealed ruthenium-tin oxide composites”, Electrochim. Acta, 52, 2691-2700 (2006).
    47. C. C. Hu, K. H. Chang, C. C. Wang, “Two-step hydrothermal synthesis of Ru-Sn oxide composites for electrochemical supercapacitors”, Electrochim. Acta, 52, 4411-4418 (2007).
    48. Y. R. Ahn, C. R. Park, S. M. Jo, D. Y. Kim, “Enhanced charge-discharge characteristics of RuO2 supercapacitors on heat-treated TiO2 nanorods”, Appl. Phys. Lett., 90, 122106 (2007).
    49. Y. Takasu, Y. Murakami, “Design of oxide electrode with large surface area”, Electrochim. Acta, 45, 4135-4141 (2000).
    50. V. Subramanian, S. C. Hall, P. H. Smith, B. Rambabu, “Mesoporous anhydrous RuO2 as a supercapacitor electrode material”, Solid State Ionics, 175, 511-515 (2004).
    51. D. J. Suh, J. P. Tae, W. I. Kim, I. K. Hong, “Synthesis of high-surface ruthenium oxide aerogels by non-alkoxide sol-gel route”, J. Power Sources, 117, 1-6 (2003).
    52. C. C. Hu, K. H. Chang, M. C. Lin, Y. T. Wu, “Design and Tailoring of the Nanotubular Arrayed Architecture of Hydrous RuO2 for Next Generation Supercapacitors”, Nano Letters, 6, 2690-2695 (2006).
    53. C. L. Cheng, Y. F. Chen, R. S. Chen, Y. S. Huang, “Raman scattering and field-emmision properties of RuO2 nanorods”, Appl. Phys. Lett., 86, 103104 (2005).
    54. A. Korotcov, H. P. Hsu, Y. S. Huang, D. S. Tsai, K. K. Tiong, “Growth and Characterization of Well-Aligned RuO2 Nanocrystals on Oxide Substrates via Reactive Sputtering”, Crystal Growth & Design, 6, 2501-2506 (2006).
    55. J.R. Roos, J.P. Celis, J. Fransaer, C. Buelens, “Development of composite plating for advanced materials”, J. Met. 42 (11) (1990) 60.
    56. C.T.J. Low, R.G.A. Wills, F.C. Walsh, “Electrodeposition of composite coatings containing nanoparticles in a metal deposit” Surface & Coatings Technology 201 (2006) 371–383
    57. 郭幸宜, “陽極沉積釕鈦複合氧化物於超級電容器之應用”, 國立中正大學化工研究所碩士論文, 2009.
    58. 劉明玨, “陽極沉積法製備釕氧化物於超級電容器之應用”, 國立中正大學化工研究所碩士論文, 2007.
    59. P.S. Mohanty and B.V.R. Tata, “Charge and salt-driven reentrant order–disorder and gas–solid transitions in charged colloids” Journal of Colloid and Interface Science 264 (2003) 101–108
    60. F.K.Sautter,“Electrodeposition of Dispersion-Hardened Nickel-Al2O3 Alloys”, J. Electrochem. Soc. 110 (1963) 557.
    61. Y. Takasu, Y. Murakami, “Design of oxide electrode with large surface area”, Electrochim. Acta, 45, 4135-4141 (2000).
    62. C. C. Hu, M. J. Liu, K. H. Chang, “Anodic Deposition of Hydous Ruthenium Oxide for Supercapacitiors:Effects of the AcO- concentration, plating temperature, and oxide loading”, Electrochem. Soc., 53, 2679-2687 (2008).
    63. C. C. Hu, M. J. Liu, K. H. Chang,” Anodic deposition of hydrous ruthenium oxide for supercapacitors”, Journal of Power Sources, 163, 1126–1131 (2007).
    64. S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A.Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, “Graphene-based composite materials”,Nature 442, 282-286(2006).
    65. C.N.R. Rao, A.K. Sood, K.S. Subrahmanyam, A. Govindaraj, “Graphene: The New Two-Dimensional Nanomaterial”, Angew. Chem., Int.Ed., 48,7752-7777 (2009).
    66. J. L. Chang, K. H. Chang, C. C.Hu, W. L. Cheng, J. M. Zen, “Improved voltammetric peak separation and sensitivity of uric acid and ascorbic acid at nanoplatelets of graphitic oxide” Electrochem.Com., 12, 596–599 (2010).
    67. S. Y. Yang, K. H. Chang, H. W. Tien, Y. F. Lee, S. M. Li, Y. S. Wang, J. Y. Wang, C. C. Ma and C. C. Hu, “Design and tailoring of a hierarchical graphene-carbon nanotube architecture for supercapacitors”, J. Mater. Chem., 21, 2374-2380 (2011)
    68. C. C. Wang, C. C. Hu,” Electrochemical catalytic modification of activated carbon fabrics by ruthenium chloride for supercapacitors”, Carbon, 43, 1926–1935 (2005).
    69. S. Y. Mar, C. S. Chen, Y. S. Huang, K. K. Tiong, “Characterization of RuO2 thin films by Raman spectroscopy”, Appl. Sur. Sci., 90, 497-504 (1995).
    70. J. V. Ryan, A. D. Berry, M. L. Anderson, J. W. Long, R. M. Stroud, V. M. Cepak, V. M. Browning, B. R. Rolison, Celia I.Merzbacher, “Electronic connection to the interior of a mesoporous insulator with nanowires of crystalline RuO2”, Nature, 406, 169-172 (2000).
    71. L. J. Meng, V. Teixeira, M. P. dos Santos, “Raman spectroscopy analysis of magnetron sputtered RuO2 thin films”, Thin Solid Films, 442, 93-97 (2003).
    72. R. S. Chen, C. C. Chen, Y. S. Huang, C. T. Chia, H. P. Chen, D. S. Tsai, K. K. Tiong,“A comparative study of microstructure of RuO2 nanorods via Raman Scattering and field emission scanning electron microscopy”, Sold State Commun., 131, 349-353 (2004).
    73. S. H. Lee, P. Liu, M. J. Seong, H. M. Cheong, C. Edwin Tracy, S. K. Deb, “Electrochemical Supercapacitors for Optical Modulation”, Electrochem. Solid State Lett., 6, A40-A42 (2003).
    74. S. Bhaskar, P. S. Dobal, S. B. Majumder, R. S. Katiyar, “X-Ray photoelectron spectroscopy and micro-Raman analysis of conductive RuO2 films”, J. Appl. Phys., 89,2987-2991 (2001).
    75. A. C. Ferrari, J. Robertson,” Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond”,Philos Trans R Soc London A, 362, 1824, 2477–512(2004).
    76. L. G. Cancado,M. A. Pimenta, Neves BRA, Dantas MSS, Jorio A. “Influence of the atomic structure on the Raman spectra of graphite edges” Phys Rev Lett, 93, 247401(2004).
    77. S. Park, J. An, R.D. Piner, I. Jung, D. Yang, A. Velamakanni, S.T. Nguyen, R.S.Ruoff, “Aqueous Suspension and Characterization of Chemically Modified Graphene Sheets”,Chem. Mater, 20, 6592 (2008).
    78. K. N. Kudin , B. Ozbas , H. C. Schniepp , R. K. Prud’homme , I. A. Aksay , R. Car ,” Raman Spectra of Graphite Oxide and Functionalized Graphene Sheets”, Nano Lett., 8 , 36(2008).
    79. K. H. Chang, C. C. Hu, “Hydrothermal Synthesis of Hydrous Crystalline RuO2 Nanoparticles for Supercapacitors”, Electrochem. Solid State Lett., 7, A466-A469(2004).
    80. A. H. Grahem, R. W. Lindsay, H. J. Read, “The Structural and Mechanical Properties of Electroless Nickel”, J. Electrochem. Soc., 112, 401-413 (1965).
    81. K. H. Chang, C. C. Hu, C. Y. Chou, “Textural and Capacitive Characteristics of Hydrothermally Derived RuO2•xH2O Nanocrystalline: Independent Control of Crystal Size and Water Content”, Chem. Mater. 19, 2112-2119 (2007).
    82. D. R. Rolison, P. L. Hagans, K. E. Swider, J. W. Long, “Role of Hydrous Ruthenium Oxide in Pt-Ru Direct Methanol Fuel Cell Anode Electrocatalyts: The Importance of Mixed Electron/Proton Conductivity”, Langmuir, 15, 774-779 (1999).
    83. K. H. Chang, Y. T. Wu, C. C. Hu, “Recent Advances in Supercapacitor ”, 29-56 (2006).
    84. D. A. McKeown, P. L. Hagans, Linda P. L. Carette, A. E. Russell, K. E. Swider, D. R. Rolison, “Structure of Hydrous Ruthenium Oxides: Implications for Charge Storage”, J. Phys. Chem. B, 103, 4825-4832 (1999).
    85. W. Domwski, T. Egami, K. E. Swider-Lyons, C. T. Love, D. R. Rolison, “Local Atomic Structure and Conduction Mechanism of Nanocrystalline Hydrous RuO2 from X-ray Scattering”, J. Phys. Chem. B, 106, 12677-12683 (2002).
    86. C. C. Hu, M. J. Liu, K. H. Chang, “Anodic deposition of hydrous ruthenium oxide for supercapacitors”, J. Power Sources, 163, 1126-1131 (2007).
    87. A. Korotcov, H. P. Hsu, Y. S. Huang, D. S. Tsai, K. K. Tiong, “Growth and Characterization of Well-Aligned RuO2 Nanocrystals on Oxide Substrates via Reactive Sputtering”, Crystal Growth & Design, 6, 2501-2506 (2006).
    88. D. P. Anderson, L. F. Warren, “Electrochemical Deposition of Conducting Ruthenium Oxide Films from Solution”, J. Electrochem. Soc., 131, 347-349 (1984).
    89. S. Y. Mar, C. S. Chen, Y. S. Huang, K. K. Tiong, “Characterization of RuO2 thin films by Raman spectroscopy”, Appl. Sur. Sci., 90, 497-504 (1995).
    90. J. V. Ryan, A. D. Berry, M. L. Anderson, J. W. Long, R. M. Stroud, V. M. Cepak, V. M. Browning, B. R. Rolison, C. I. Merzbacher, “Electronic connection to the interior of a mesoporous insulator with nanowires of crystalline RuO2”, Nature, 406, 169-172 (2000).
    91. L. J. Meng, V. Teixeira, M. P. dos Santos, “Raman spectroscopy analysis of magnetron sputtered RuO2 thin films”, Thin Solid Films, 442, 93-97 (2003).
    92. R. S. Chen, C. C. Chen, Y. S. Huang, C. T. Chia, H. P. Chen, D. S. Tsai, K. K. Tiong, “A comparative study of microstructure of RuO2 nanorods via Raman Scattering and field emission scanning electron microscopy”, Sold State Commun., 131, 349-353 (2004).
    93. S. H. Lee, P. Liu, M. J. Seong, H. M. Cheong, C. Edwin Tracy, S. K. Deb, “Electrochemical Supercapacitors for Optical Modulation”, Electrochem. Solid State Lett., 6, A40-A42 (2003).
    94. K. K. Kinoshita, “Carbon: Electrochemical and Physicochemical Properties” pp. 187–193, John Wiley & Sons, New York (1988).
    95. Z. S. Wu, D. W. Wang, Wencai Ren, Jinping Zhao, Guangmin Zhou, Feng Li, and Hui-Ming Cheng “Anchoring Hydrous RuO2 on Graphene Sheets for High-Performance Electrochemical Capacitors”, Adv. Funct. Mater, 20, 3595–3602(2010).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE