研究生: |
周暐傑 Chou, Wei-Chieh |
---|---|
論文名稱: |
具有高效率節能之無線健康照顧系統 An Energy Efficient Wireless Healthcare Monitoring System |
指導教授: |
黃柏鈞
Huang, Po-Chiun |
口試委員: |
黃柏鈞
馬席彬 蔡佩芸 何奕倫 林彥宏 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 74 |
中文關鍵詞: | 遠距照顧 、心電圖 、系統晶片 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在論文中提出一個具有高效率節能的健康照顧系統。系統有三個部分所組成的。分別為無線量測節點、行動裝置與雲端伺服器。無線量測節點擷取到的信號傳至附近的電子儀器像是智慧型手機的行動裝置。這些行動會做為資料的中繼站,再以3G 或是WiFi 的方式傳到雲端的伺服器。因為信號必須連續的監測24個小時以上,所以低能量消耗是我們在設計無線量測節點時的主要目標。
在雛型系統中,我們使用商用的元件組成一個無線量測節點。此外我們使用以Android 作業系統的平台開發一個程式,具有可以上傳資料與即時畫圖的功能。在雲端的伺服器我們不僅開發一個低複雜度尋找心電圖上R 點的方法,並且也開發可以預測病人病情的演算法。有了實現雛型系統的經驗,我們可以使用晶片來實現這個系統已讓整體效能更好。
在使用晶片做為無線量測節點的架構中,晶片上具有四個部分,分別為類比放大器、類比數位轉換器、數位信號處理器與無線發射機。在論文中我們集中描述數位信號處理器的部分。數位信號處理器大致是由微處理器、壓縮電路和其他的輔助電路所組成的。其中微處理器是由一個開放原始碼的8051 微處理器所修改的。數位信號處理器的主要功能是作為晶片的主動元件控制其他電路。此外由於無線發射機為最耗電的部分,因此降低所需要傳輸的資料可以減省能量消耗。為了要節省傳輸的資料量,數位信號處理包含了壓縮電路。此外為了要讓功率最低化在數位信號處理器的設計上也是以低功率消耗為考量,像是clock gating的技術。另一方面,為了應付body area network 的需求。在論文中一個多重功能的收發機的設計也被提出。在這個收發機中,數位電路是一個可程式化的處理器可以應付不同模式的解調變的需求。
在論文中所提出的無線感測晶片架構以混和訊號的晶片設計流程實現。此設計流程也會被介紹包括數位電路和類比電路驗證的方法。這個無線感測晶片是以TSMC 0.18 μm 的製程所實現。此晶片的大小為5.29 mm2,在操作電壓在1V和工作頻率為1M Hz 的環境下,數位電路的功率消耗為365 μW,整個晶片的功率為710 μW。
[1] Arduino Software Inc. (2013, May) Arduino Fio. [Online]. Available: http://arduino.cc/en/
[2] R. Harrison, “A versatile integrated circuit for the acquisition of biopotentials,” in IEEE Custom Integrated Circuits Conference (CICC), San Jose, CA, USA, September 2007,pp. 115–122.
[3] A.Atkielski. (2007, January) Electrocardiography. [Online]. Available: http://en.wikipedia.org/wiki/Electrocardiography
[4] National Institute of Biomedical Imaging and Bioengineering. (2012, January) MITBIH arrhythmia database. [Online]. Available: http://www.physionet.org/physiobank/
database/mitdb/
[5] C. C. Chan, W. C. Chou, C. W. Chen, Y. L. Ho, Y. H. Lin, and H. P. Ma, “Energy efficient diagnostic grade mobile ECG monitoring,” in IEEE International New Circuits
and Systems Conference (NEWCAS), Montreal, Canada, June 2012, pp. 153–156.
[6] C. C. Chan, C.W. Chen,W. C. Chou, Y. L. Ho, Y. H. Lin, and H. P. Ma, “A mobile ECG healthcare platform,” in IEEE Biomedical Circuits and Systems Conference (BioCAS),
Hsinchu, Taiwan, November 2012, pp. 87–87.
[7] W. T. Tang, C. M. Hu, and C. Y. Hsu, “A mobile phone based homecare management system on the cloud,” in IEEE International Conference on Biomedical Engineering and
Informatics (BMEI), vol. 6, Yantai, China, October 2010, pp. 2442–2445.
[8] Y. Y. ChenWu, H. P. Ma, C. Biswas, and D. Markovic, “Universal architecture prototype for patient-centric medical environment,” in IEEE International Symposium on VLSI Design, Automation, and Test (VLSI-DAT), Hsinchu, Taiwan, April 2012, pp. 1–4.
[9] A. Oppenheim and R. Schafer, Discrete-Time Signal Processing, 3rd ed. Upper Saddle River, NU, USA: Prentice Hall, August 2008.
[10] M. Mendez, A. Bianchi, and S. Cerutti, “Non stationary analysis of heart rate variability during the obstructive sleep apnea,” in IEEE Annual International Conferencve of the IEEE Engineering in Medicine and Biology Society (IEMBS), vol. 1, San Francisco, CA, USA, September 2004, pp. 286–289.
[11] N. Arzeno, Z. D. Deng, and C. S. Poon, “Analysis of first-derivative based QRS detection algorithms,” IEEE Transactions on Biomedical Engineering, vol. 55, no. 2, pp. 478–484, February 2008.
[12] D.Simunic, S.Tomac, and I.Vrdoljak, “Wireless ECG monitoring system in wireless communication,” in IEEE International Conference on Wireless Communication, Vehicular Technology, Information Theory and Aerospace Electronic Systems Conference (Wireless VITAE), Aalborg, Denmark, May 2009, pp. 73–76.
[13] R. Fensli, E. Gunnarson, and O. Hejlesen, “A wireless ECG system for continuous event recording and communication to a clinical alarm station,” in IEEE Engineering in Medicine and Biology Society (IEMBS), vol. 1, San Francisco, CA, USA, September 2004, pp. 2208–2211.
[14] J. Simsic and S. Teran. (2001, September) Open core design document. [Online]. Available: http://www.opencores.org
[15] X. Zhang, H. Jiang, B. Zhu, X. Chen, C. Zhang, and Z. Wang, “A low-power remotelyprogrammable MCU for implantable medical devices,” in IEEE Asia Pacific Conference
on Circuits and Systems (APCCAS), Kuala Lumpur, Malaysia, December 2010, pp. 28–31.
[16] S. L. Chen, H. Y. Lee, C. A. Chen, H. Y. Huang, and C. sing Luo, “Wireless body sensor network with adaptive low-power design for biometrics and healthcare applications,”
IEEE Transactions on Systems Journal, vol. 3, no. 4, pp. 398–409, December 2009.
[17] Y. Liang, “Efficient temporal compression in wireless sensor networks,” in IEEE Conference on Local Computer Networks (LCN), Bonn, Germany, October 2011, pp. 466–474.
[18] K. Sayood, Introduction to Data Compression, 2nd ed. Burlington, MA, USA: Morgan Kaufmann, May 2005.
[19] S. Sharma, A. Vyas, B. Thakker, D. Mulvaney, and S. Datta, “Wireless body area network for health monitoring,” in IEEE International Conference on Biomedical Engineering
and Informatics (BMEI), vol. 4, Shanghai, China, October 2011, pp. 2183–2186.
[20] Atmel Inc., 8-bit Atmel microcontroller with 128kbytes In-System Programmable Flash ATmega103 datasheet, San Jose, CA, USA, February 2007.
[21] Texas Instruments Inc., Mixed signal microcontroller MSP430 datasheet, Dallas, TX, USA, January 2004.
[22] S. Farshchi, P. Nuyujukian, A. Pesterev, I. Mody, and J. Judy, “A tinyos-based wireless neural sensing, archiving, and hosting system,” in IEEE Conference International IEEE
EMBS Conference on Neural Engineering, Arlington, VA, USA, March 2005, pp. 671–674.
[23] Y. Gui, Z. Xu,W. Pei, B. Huang, and C. HongDa, “A smart 16-channel front-end system for extracelluar neural recording,” in IEEE Biomedical Circuits and Systems Conference (BioCAS), Paphos, Cyprus, November 2010, pp. 408–411.
[24] Texas Instruments Inc., 8-bit single-chip microcontroller HMS99C52 datasheet, Dallas, TX, USA, January 2003.
[25] H. Gageldonk, K. Berkel, A. Peeters, D. Baumann, D. Gloor, and G. Stegmann, “An asynchronous low-power 80c51 microcontroller,” in IEEE International Symposium on Advanced Research in Asynchronous Circuits and Systems, San Deigo, CA, USA, April 1998, pp. 96–107.
[26] Texas Instruments Inc., Ultra-High-Speed microcontroller DS89C420 datasheet, Dallas, TX, USA, May 2002.