簡易檢索 / 詳目顯示

研究生: 蔡宗廷
Tsai, Tsung Ting
論文名稱: 超快光游離誘發酚-氨錯合物陽離子內之 質子轉移動態學研究
Ultrafast Photoionization Induced Proton Transfer Dynamic in Phenol-Ammonia Cation Complex
指導教授: 鄭博元
Cheng, Po Yuan
口試委員: 朱立岡
Chu, Li-Kang
劉振霖
Li0u, Chen-Lin
鄭博元
Cheng, Po Yuan
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 101
中文關鍵詞: 質子轉移陽離子動態學錯合物飛秒雷射
外文關鍵詞: proton transfer, complex, cation dynamics, femtosecond laser, phenol, ammonia
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,本團隊利用飛秒雷射激發-探測光游離-光裂解技術(Femtosecond Pump-Probe Photoionization-Photofragmentation technique)結合質譜偵測技術,研究[PhOH-NH3]+陽離子錯合物的質子轉移反應及相關動力學。吾人以REMPI技術(1+1 , λ_pump = 261.3 ~ 273.3 nm)游離化PhOH-NH3,再藉由導入探測雷射(λ_probe = 392 ~ 410 nm)得到[PhOH-NH3]+離子碎裂強度隨時間變化的瞬時訊號。我們發現在Δt = 6 ps的離子損耗率光譜不僅與Mikami團隊報告過的[PhOH-NH3]+離子阱光裂解光譜圖相似,與苯氧自由基(PhO.)電子從基態(X ̃)躍遷至π-π*激發態(C ̃)的吸收光譜也有相像之處,這意謂著我們在Δt = 6 ps所觀察[PhOH-NH3]+損耗光譜的形狀就是質子轉移的結構。另外,吾人亦觀測[PhOH-H2O]+與[PhOH-Ar]+在不同波長的瞬時訊號,但發現[PhOH-H2O]+與[PhOH-Ar]+錯合物內的結構弛緩過程皆未發生質子轉移。我們將利用兩組時間常數適解在不同波長的瞬時訊號,分別是τ_1≈ 70 fs與τ_2≈ 1 ps。理論計算的結果顯示出[PhOH-NH3]FC+弛緩至最穩定的質子轉移結構約有0.3 eV的能量差,且集中在熱反應中心OPh⋯H⋯N。依此吾人推論反應過程為PhOH-NH3藉由REMPI游離至[PhOH-NH3]FC+能態後,進行一“起始波包運動(≈ 70 fs) ”,過程中,質子會在OPh與N之間快速移動,接著熱反應中心的弛緩能量在H+移動期間透過分子內振動能量重新分佈(IVR)進行“質子轉移弛緩(≈ 1 ps)”,最後產生穩定的質子轉移結構[PhO−NH4]+。本論文研究的結果顯示:錯合物中路易式鹼分子的質子親和力與錯合物陽離子弛緩至最穩定結構的弛緩能量,是影響質子轉移過程的關鍵。


    We report studies of ultrafast proton transfer (PT) reaction of PhOH-NH3 cation complex by using femtosecond pump-probe photoionization-photofragmentation spectroscopy (fs-PIPF). Neutral PhOH-NH3 complexes prepared in a free jet are photoionized by femtosecond [1+1] resonance-enhanced multiphoton ionization via the S1 state, and the subsequent dynamics occurring in the cations is probed by delayed pulses that result in ion fragmentation. The spectrum of the relative [PhOH-NH3]+ ion depletion yields measured at ~6 ps with λ_probe = 392 ~ 410 nm was found to be similar to the photofragmentation spectrum of [PhOH-NH3]+ reported by Mikami et al. and it resembles the X ̃→C ̃ band of the phenoxy radical. Thus, it suggests that the observed temporal evolutions of the photofragmentation spectra are consistent with an intracomplex PT reaction. Besides, we also compare fs-PIPF [PhOH-NH3]+ ion transients at a series of pump and probe wavelengths with [PhOH-H2O]+ and [PhOH-Ar]+ transients. The very different temporal evolutions of [PhOH-H2O]+ and [PhOH-Ar]+ transients from those of [PhOH-NH3]+ further confirm the above assignments. The experiments revealed that PT in [PhOH-NH3]+ cation proceeds in two distinct steps: an initial wave-packet motion (∼70 fs) followed by a slower relaxation (∼1 ps) that stabilizes the system into the equilibrium PT structure. Our results support the mechanism of intracomplex PT in [PhOH-NH3]+ cation complex and suggest that the proton affinity of the base is an important factor for the proton-transfer dynamics.

    目 錄 摘要.................................................I Abstract............................................II 目錄................................................III 第 1 章 緒論..........................................1 1.1 引文.............................................1 1.2 文獻回顧..........................................3 第 2 章 實驗系統與技術.................................9 2.1激發-探測共振增強多光子游離技術......................9 2.2 超快飛秒雷射系統..................................12 2.2.1 雷射產生源.....................................12 2.2.2.能量再生放大器:................................17 2.3波長調變器........................................23 2.3.1 倍頻與混頻技術.................................23 2.4分子束系統.......................................25 2.4.1分子束樣品進氣裝置..............................29 2.5飛行時間質譜儀...................................32 2.6 實驗架設圖......................................36 2.7訊號擷取系統.....................................37 2.8儀器響應函數(Instrument response function, IRF)..39 2.8.1測量實驗中各雷射波長IRF的FWHM...................39 第 3 章 實驗結果與討論...............................42 3.1 [PhOH-NH3]+激發-探測光游離-光裂解實驗條件.........42 3.1.1 [PhOH-NH3]+質譜圖............................42 3.1.2 [PhOH-NH3]+陽離子光游離-光裂解離子損耗光譜......44 3.1.3離子損耗瞬時訊號的非均向性.......................45 3.1.4氨濃度的依存性.................................46 3.1.5雷射能量依存性.................................49 3.1.6雷射波長的依存性...............................53 3.2 [PhOH-NH3]+是否發生質子轉移?....................55 3.2.1參考前人文獻並推論[PhOH-NH3]+光譜與質子轉移的關係.55 3.2.2比較[PhOH-NH3]+與[PhOH-H2O]+的實驗結果..........58 3.2.3比較[PhOH-NH3]+與[PhOH-Ar]+的實驗結果...........63 3.2.4. [PhOH-NH3]+與碎片NH4+的離子瞬時訊號...........65 3.3動力學模型適解離子瞬時損耗訊號與數據分析............67 3.3.1適解[PhOH-NH3]+損耗瞬時訊號與數據分析............67 3.3.2 [PhOH-H2O]+的離子瞬時損耗光譜與數據分析.........75 3.3.3 [PhOH-Ar]+的離子瞬時損耗光譜與數據分析..........81 第 4 章 結論........................................86 A. 附錄(Appendix)...............................88 A.1 [PhOH-H2O]+與[PhOH-Ar]+質譜....................88 A.1.1 [PhOH-H2O]+質譜圖............................88 A.1.2 [PhOH-Ar]+質譜...............................89 A.2 適解實驗光譜....................................90 A.2.1 適解[PhOH-NH3]+的離子損耗瞬時訊號..............90 A.2.2 適解[PhOH-H2O]+離子損耗瞬時訊號................92 A.2.3 適解[PhOH-Ar]+離子損耗光譜.....................94 A.3 PhOH-B位能圖的能量資料...........................94 A.3.1 PhOH-NH3.....................................95 A.3.2 PhOH-H2O.....................................96 A.3.3 PhOH-Ar......................................97 參考文獻............................................98

    [1] 蘇建華, 中華技術學院學報 28, 12 (2003)
    [2] M.S., J.D.J., The Manganese-calcium oxide cluster of Photosystem II and its assimilation by the Cyanobacteria. 2006.
    [3] 黃朝榮, 科學發展 367, 26 (2003)
    [4] 鍾文梅, 麥.江.楊., 科儀新知 69 (2007)
    [5] Weber, K., Z. Phys. Chem. Abt. B 15, 18 (1931)
    [6] Weller, A., Z, Z. Elktrochem. Berichte der Bunsengesellschaft für physikalische Chemie 56, 662 (1952)
    [7] Smith, K.K., K.J. Kaufmann, D. Huppert, and M. Gutman, Chem. Phys. Lett. 64, 522 (1979)
    [8] Kosower, E.M. and D. Huppert, Annu. Rev. Phys. Chem. 37, 127 (1986)
    [9] Webb, S.P., L.A. Philips, S.W. Yeh, L.M. Tolbert, and J.H. Clark, J. Phys. Chem. 90, 5154 (1986)
    [10] Brauman, J.I. and L.K. Blair, JACS 90, 6561 (1968)
    [11] Moylan, C.R. and J.I. Brauman, Annu. Rev. Phys. Chem. 34, 187 (1983)
    [12] Mikami, N., A. Okabe, and I. Suzuki, J. Phys. Chem. 92, 1858 (1988)
    [13] Morrison, J.D. and J.C. Traeger, Int. J. Mass. Spectrom. 11, 277 (1973)
    [14] Steadman, J. and J.A. Syage, JACS 113, 6786 (1991)
    [15] Syage, J.A., ZEITSCHRIFT FÜR PHYSIK. D, ATOMS, MOLECULES, & CLUSTERS 30, 1 (1994)
    [16] Syage, J.A., Chem. Phys. Lett. 202, 227 (1993)
    [17] Syage, J.A., Faraday Discuss. 97, 401 (1994)
    [18] Syage, J.A. and J. Steadman, J. Chem. Phys 95, 2497 (1991)
    [19] Syage, J.A., J. Phys. Chem. 99, 5772 (1995)
    [20] Steadman, J. and J.A. Syage, J. Chem. Phys 92, 4630 (1990)
    [21] Syage, J.A. and J. Steadman, J. Phys. Chem. 96, 9606 (1992)
    [22] Hineman, M.F., D.F. Kelley, and E.R. Bernstein, J. Chem. Phys 99, 4533 (1993)
    [23] Mikami, N., T. Sasaki, and S. Sato, Chem. Phys. Lett. 180, 431 (1991)
    [24] Mikami, N., S. Sato, and M. Ishigaki, Chem. Phys. Lett. 202, 431 (1993)
    [25] Tripathi, G.N.R. and R.H. Schuler, J. Chem. Phys 81, 113 (1984)
    [26] Sato, S., T. Ebata, and N. Mikami, Spectrochim. Acta, Pt. A: Mol. Spectrosc. 50, 1413 (1994)
    [27] Yi, M. and S. Scheiner, Chem. Phys. Lett. 262, 567 (1996)
    [28] Sodupe, M., A. Oliva, and J. Bertrán, J. Phys. Chem. A 101, 9142 (1997)
    [29] Sobolewski, A.L. and W. Domcke, J. Phys. Chem. A 105, 9275 (2001)
    [30] Pino, G.A., C. Dedonder-Lardeux, G. Grégoire, C. Jouvet, S. Martrenchard, and D. Solgadi, J. Chem. Phys 111, 10747 (1999)
    [31] Pino, G., G. Gre´goire, C. Dedonder-Lardeux, C. Jouvet, S. Martrenchard, and D. Solgadi, Phys. Chem. Chem. Phys. 2, 893 (2000)
    [32] David, O., C. Dedonder-Lardeux, and C. Jouvet, Int. Rev. Phys. Chem. 21, 499 (2010)
    [33] Grégoire, G., C. Dedonder-Lardeux, C. Jouvet, S. Martrenchard, A. Peremans, and D. Solgadi, J. Phys. Chem. A 104, 9087 (2000)
    [34] Ishiuchi, S.-i., M. Saeki, M. Sakai, and M. Fujii, Chem. Phys. Lett. 322, 27 (2000)
    [35] Martrenchard-Barra, S., C. Dedonder-Lardeux, C. Jouvet, D. Solgadi, M. Vervloet, G. Grégoire, and I. Dimicoli, Chem. Phys. Lett. 310, 173 (1999)
    [36] Miyazaki, M., A. Kawanishi, I. Nielsen, I. Alata, S. Ishiuchi, C. Dedonder, C. Jouvet, and M. Fujii, J. Phys. Chem. A 117, 1522 (2013)
    [37] 周威銧, 胞嘧啶之氣相超快激發態動態學研究:激發態衰減時間與激發能量的依存性, in 化學系. 2008, 國立清華大學: 新竹市. p. 106.
    [38] 陳依微, 酚-氨陽離子錯合物中之超快質子轉移反應動態學研究, in 化學系. 2011, 國立清華大學: 新竹市. p. 91.
    [39] 何智偉, 氣相飛秒化學反應動態學研究1.二甲基亞碸之超快三體光解反應動態學2.偶氮苯陽離子在異構化途徑之同調振動, in 化學系. 2008, 國立清華大學: 新竹市. p. 226.
    [40] Eldredge, B.A.A.P., General Chemistry: Principles, Patterns, and Applications, v. 1.0 (2 Volume Set).
    [41] Smalley, R.E., L. Wharton, and D.H. Levy, Acc. Chem. Res. 10, 139 (1977)
    [42] Wiley, W.C. and I.H. McLaren, Rev. Sci. Instrum. 26, 1150 (1955)
    [43] Armentano, A., M. Riese, M. Taherkhani, M. Ben Yezzar, K. Muller-Dethlefs, M. Fujii, and O. Dopfer, J. Phys. Chem. A 114, 11139 (2010)
    [44] Grégoire, G., C. Dedonder-Lardeux, C. Jouvet, S. Martrenchard, and D. Solgadi, J. Phys. Chem. A 105, 5971 (2001)
    [45] Radziszewski, J.G., M. Gil, A. Gorski, J. Spanget-Larsen, J. Waluk, and B.a.J. Mróz, J. Chem. Phys 115, 9733 (2001)
    [46] Sato, S. and N. Mikami, J. Phys. Chem. 100, 4765 (1996)
    [47] Sawamura, T., A. Fujii, S. Sato, T. Ebata, and N. Mikami, J. Phys. Chem. 100, 8131 (1996)
    [48] Kleinermanns, K., C. Janzen, D. Spangenberg, and M. Gerhards, J. Phys. Chem. A 103, 5232 (1999)
    [49] LeClaire, J.E., R. Anand, and P.M. Johnson, J. Chem. Phys 106, 6785 (1997)
    [50] Hunter, E.P.L. and S.G. Lias, J. Phys. Chem. Ref. Data 27, 413 (1998)
    [51] DeFrees, D.J., R.T. McIver, and W.J. Hehre, JACS 102, 3334 (1980)
    [52] Hoke, S.H., S.S. Yang, R.G. Cooks, D.A. Hrovat, and W.T. Borden, JACS 116, 4888 (1994)
    [53] Kebarle, P., S.K. Searles, A. Zolla, J. Scarborough, and M. Arshadi, JACS 89, 6393 (1967)
    [54] Fujii, A., M. Miyazaki, T. Ebata, and N. Mikami, J. Chem. Phys 110, 11125 (1999)
    [55] Solcà, N. and O. Dopfer, Chem. Phys. Lett. 325, 354 (2000)
    [56] Solcà, N. and O. Dopfer, J. Mol. Struct. 563-564, 241 (2001)
    [57] Ishiuchi, S., M. Sakai, Y. Tsuchida, A. Takeda, Y. Kawashima, O. Dopfer, K. Muller-Dethlefs, and M. Fujii, J. Chem. Phys. 127, 114307 (2007)
    [58] Kim, H.-T., R.J. Green, J. Qian, and S.L. Anderson, J. Chem. Phys 112, 5717 (2000)
    [59] Solgadi, D., C. Jouvet, and A. Tramer, J. Phys. Chem. 92, 3313 (1988)
    [60] Roscioli, J.R., L.R. McCunn, and M.A. Johnson, Science 316, 249 (2007)
    [61] Douberly, G.E., A.M. Ricks, B.W. Ticknor, and M.A. Duncan, Phys. Chem. Chem. Phys. 10, 77 (2008)
    [62] Re, S. and Y. Osamura, J. Phys. Chem. A 102, 3798 (1998)
    [63] Courty, A., M. Mons, I. Dimicoli, F. Piuzzi, V. Brenner, and P. Millié, J. Phys. Chem. A 102, 4890 (1998)
    [64] Cerny, J., X. Tong, P. Hobza, and K. Muller-Dethlefs, Phys. Chem. Chem. Phys. 10, 2780 (2008)
    [65] Gonohe, N., H. Abe, N. Mikami, and M. Ito, J. Phys. Chem. 89, 3642 (1985)
    [66] Haines, S.R., C.E.H. Dessent, and K. Müller-Dethlefs, J. Electron. Spectrosc. Relat. Phenom. 108, 1 (2000)
    [67] Ishiuchi, S., M. Sakai, Y. Tsuchida, A. Takeda, Y. Kawashima, M. Fujii, O. Dopfer, and K. Muller-Dethlefs, Angew. Chem. Int. Ed. Engl. 44, 6149 (2005)
    [68] Lipert, R.J. and S.D. Colson, J. Chem. Phys 89, 4579 (1988)
    [69] Lipert, R.J. and S.D. Colson, J. Chem. Phys 92, 3240 (1990)
    [70] Nix, M.G., A.L. Devine, B. Cronin, R.N. Dixon, and M.N. Ashfold, J. Chem. Phys. 125, 133318 (2006)
    [71] Savee, J.D., J.E. Mann, and R.E. Continetti, J. Phys. Chem. Lett 4, 3683 (2013)
    [72] Jacoby, C., P. Hering, M. Schmitt, W. Roth, and K. Kleinermanns, Chem. Phys. 239, 23 (1998)
    [73] Bist, H.D., J.C.D. Brand, and D.R. Williams, I. Mol. Spectrosc. 24, 413 (1967)
    [74] Fisher, I.P., T.F. Palmer, and F.P. Lossing, JACS 86, 2741 (1964)
    [75] Miyazaki, Y., Y. Inokuchi, T. Ebata, and M. Petković, Chem. Phys. 419, 205 (2013)
    [76] "Bollettino dell'Istituto di Entomologia ""Guido Grandi"" della Universita degli Studi di Bologna"Park, J.K., Chem. Phys. Lett. 315, 119 (1999)
    [77] Dopfer, O., G. Reiser, K. Müller-Dethlefs, E.W. Schlag, and S.D. Colson, J. Chem. Phys 101, 974 (1994)
    [78] Fuke, K., H. Yoshiuchi, K. Kaya, Y. Achiba, K. Sato, and K. Kimura, Chem. Phys. Lett. 108, 179 (1984)
    [79] Mueller-Dethlefs, K., O. Dopfer, and T.G. Wright, Chem. Rev. 94, 1845 (1994)
    [80] Page, R.H., R.J. Larkin, Y.R. Shen, and Y.T. Lee, J. Chem. Phys 88, 2249 (1988)
    [81] Dessent, C.E.H., S.R. Haines, and K. Müller-Dethlefs, Chem. Phys. Lett. 315, 103 (1999)
    [82] Kalkman, I., C. Brand, T.B. Vu, W.L. Meerts, Y.N. Svartsov, O. Dopfer, X. Tong, K. Muller-Dethlefs, S. Grimme, and M. Schmitt, J. Chem. Phys. 130, 224303 (2009)
    [83] Rosenkrantz, M.E., Chem. Phys. Lett. 173, 378 (1990)
    [84] Barlow, M.J., B.M. Swinyard, P.J. Owen, J. Cernicharo, H.L. Gomez, R.J. Ivison, O. Krause, T.L. Lim, M. Matsuura, S. Miller, G. Olofsson, and E.T. Polehampton, Science 342, 1343 (2013)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE