簡易檢索 / 詳目顯示

研究生: 陸達文
Dalwin Lewis
論文名稱: 人臉影像辨識演算法的探討
A Study on Face Image Recognition Algorithms
指導教授: 陳朝欽
Chaur-Chin Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊系統與應用研究所
Institute of Information Systems and Applications
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 38
中文關鍵詞: 人臉辨識
相關次數: 點閱:48下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 人臉辨識在生物辨識領域已經被廣泛的研究,相較於其他生物辨識系統擁有更不侵犯性,使得在不強迫的情形下進行監視變的可行,因此人臉辨識這項研究的相當的熱門。雖然近年已經有相當多的論文發表,但似乎沒有無所不包的得引導,好讓我們實際的去時做論文上提及人臉辨識的方法。
    這篇論文中我們解答在這些論文條件下所出現的問題
    我們研究了主成分分析, 、線性鑑別分析、獨立成份分析法,除此之外核心版本的主成分分析與線性鑑別分析。
    我們執行實驗使用了五個人臉辨識演算法在AT&T、YALE和NTHU PRIP人臉資料庫,辨識率在結果的章節展示。


    Face Recognition has become one of the most widely researched areas in the Biometric Identification domain. Its popularity is due mostly to the fact that it is less intrusive than other biometric systems thus making it highly applicable to fields such as law enforcement and surveillance. Although there are a vast number of papers that are published yearly, there seems to be no comprehensive guide as to how to actually implement the most read about face recognition methods.
    In this thesis we try to answer this question by providing the steps that these face recognition algorithms follow to arrive at their output. We studied Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA) and Independent Component Analysis (ICA). In addition we also studied the Kernel version of PCA and LDA.
    We performed experiments using the five face recognition methods on the AT&T, YALE and NTHU PRIP face databases. The classification rates are reported in the experimental results section.

    1 Introduction………………………………………………………1 2 Projection Based Recognition Methods………...…………….…4 2.1 Eigenface Projection...................................................................................4 2.2 Fisherface Projection .................................................................................7 2.3 Independent Component Analysis Projection..........................................10 2.4 Kernel Principal Component Analysis Projection....................................15 2.5 Kernel Fisher Discriminant Analysis Projection......................................20 3 Description of Face Databases ………………………………....26 3.1 The AT&T Face Database........................................................................26 3.2 The YALE Face Database.......................................................................27 3.3 The NTHU PRIP Face Database...................... .....................................28 4 Experimental Results………………………………….………30 4.1 Experiments on the AT&T face database...............................................30 4.2 Experiments on the YALE face database...............................................32 4.3 Experiments on the NTHU PRIP face database….................................33 5 Conclusion………………...……………..………………………35 References………………………………………….…………………...36

    [ATT] AT&T Laboratories Cambridge – The Database of Faces
    (http://www.cl.cam.ac.uk/Research/DTG/attarchive/facedatabase.html)

    [Bac02] F.R. Bach and M.I. Jordan, “Kernel Independent Component Analysis”,
    JMLR, 3(Jul):1-48, March 2002.

    [Bar02] M. Bartlett and T. Sejnowski, “Face Recognition by Independent Component
    Analysis”, IEEE Trans. on Neural Networks, Vol. 13, no. 6, pp. 1450-1464,
    2002.

    [Bau00] G. Baudat and F. Anouar, “Generalized Discriminant Analysis using a Kernel
    Approach” Neural Computation vol. 12 no.10, pp. 2385-2404, 2000.

    [Bel95] A.J. Bell and T.J. Sejnowski, “An information maximization approach to blind
    separation and blind deconvolution”, Neural Computation, vol. 7, pp. 1129-
    1159, 1995.

    [Bel97] P.N. Belhumeur, J.P. Hespanha, and D.J. Kriegman, “Eigenfaces vs. Fisherfaces:
    Recognition Using Class Specific Linear Projection”, IEEE Trans. on PAMI,
    vol. 15, no. 7, pp. 711-720, 1997.

    [Com94] P. Comon, “Independent component analysis, A new concept?”, Signal
    Processing, vol. 6, pp. 287-314, 1994.

    [Dau04] J. Daugman, “How Iris Recognition works”, IEEE Trans. on Circuits and
    Systems for Video Technology, vol. 14, no. 1, pp. 21-30, 2004.

    [Dud01] R.O. Duda, P.E. Hart, and D.G. Stork, “Pattern Classification (second edition),
    Wiley, 2001.

    [Fis36] R. Fisher, “The use of multiple measures in taxonomic problems”, Annals of
    Eugenics, vol. 7, pp. 179-188, 1936.

    [Fri88] J.H. Friedman, “Regularized discriminant analysis”, Journal of the American
    Statistical Association, pp. 165-175, 1988.

    [Fuk90] K. Fukunaga, “Introduction to Statistical Pattern Recognition”, Academic Press,
    1990.

    [Hor86] R. Horn and C. Johnson, “Matrix Analysis”, Cambridge University
    Press, 1985.

    [Hsu06] C.H. Hsu, “New Projection-based Features for Face Recognition”,
    Master Thesis, National Tsing Hua University, Taiwan, 2006.

    [Hyv99] A.Hyvarinen, “Fast and robust fixed-point algorithms for independent
    component analysis”, IEEE Trans. on Neural Networks, vol. 10, no. 3,
    pp. 626-634, 1999.

    [Jol86] I.T. Jolliffe, “Principal Component Analysis”, Springer-Verlag, 1986.

    [Kar97] J. Karhunen, “A Class of Neural Networks for Independent Component
    Analysis”, IEEE Trans. on Neural Networks, vol. 8, no. 3, pp. 486-504,
    May 1997.

    [Mal05] D. Maltoni, D. Maio, A. Jain, and S. Prabhakar, “Handbook of Fingerprint
    Recognition”, Springer, 2005.

    [McK98] M.J. Keown, S. Makeig, G.G. Brown, T.P. Tung, S.S. Kindermann, A.J. Bell,
    and T.J. Sejnowski, “Analysis of fMRI by decomposition into independent
    spatial components”, Human Brain mapping, vol. 6, no. 3, pp. 160-188, 1998.

    [Mik99] S. Mika, G. Ratsch, J.Weston, B. Scholkopf, and K.R. Muller, “Fisher
    Discriminant Analysis with Kernels”, IEEE International Workshop on
    Neural Networks for Signal Processing, vol. 9, pp. 41-48, 1999.

    [Nef98] A. Nefian and M.H. Hayes III, “ Hidden Markov Models for Face
    Recognition”, in Proc. ICASSP, vol. 5, pp. 2721-2724, 1998.

    [Sam94] F.S. Samaria and A.C. Harter, “Parameterisation of a Stochastic Model for
    Human Face Identification”, Proceedings of 2nd IEEE Workshop on
    Applications of Computer Vision, Sarasota (Florida), pp. 1-5, 1994.

    [Sch98] B. Scholkopf, A. Smola, and K.R. Muller, “Nonlinear Component Analysis as
    a Kernel Eigenvalue Problem”, Neural Computation” vol. 10, pp. 1299-1319,
    1998.

    [Swe96] D.L. Sweets and J. Weng, “Using Discriminant Eigenfeatures for Image
    Retrieval”, IEEE Trans. on PAMI, vol. 18, pp. 831-836, 1996.

    [Tay04] J.S. Taylor and N. Cristianini, “Kernel Methods for Pattern Analysis”,
    Cambridge University Press, 2004.

    [Tur91] M. Turk and A. Pentland, “Eigenfaces for Recognition”, Journal of
    Cognitive Neuroscience, vol 3, pp. 71-86, 1991.

    [Tur01] M. Turk, “A Random Walk through Eigenspace”, IEICE TRANS. INF.
    & SYST., vol. E84-D, no.12, pp. 1586-1595, 2001.

    [Yal] Yale Center for Computational Vision and Control - The Yale face database
    (http://cvc.yale.edu/projects/yalefaces/yalefaces.html)

    [Zha99] W. Zhao, R. Chellappa, and P.J. Phillips, “Subspace Linear Discriminant
    Analysis for Face Recognition”, Technical Report CAR-TR-914, Center
    for Automation Research, University of Maryland, 1999.

    [Zha03] W. Zhao, R. Chellappa, and P.J. Phillips, and J. Rosenfeld,“FaceRecognition:A
    Literature Survey”, ACM computing surveys”, vol. 35, no.4, pp. 399-458,
    2003.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE