研究生: |
楊諺翎 Yang, Yen-Lin |
---|---|
論文名稱: |
以化學氣相傳輸法製備單晶β-FeSi2奈米線及其性質量測 Synthesis and Properties of Single-Crystal β-FeSi2 Nanowires by Chemical Vapor Transport Method |
指導教授: |
陳建瑞
Chen, Jiann-Ruey 鄧希平 Teng, Shi-Ping |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 87 |
中文關鍵詞: | 二矽化鐵 、奈米線 、化學氣相傳輸法 、半導體矽化物 |
外文關鍵詞: | Iron silicide, nanowires(NWs), Chemical vapor transport(CVT) method, Semiconducting silicide |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近幾十年來,許多種材料的奈米線受到廣泛地討論,而金屬矽化物與純金屬比較,具有較好的熱穩定性和不容易被氧化的特性,且有較佳的抗腐蝕能力;且大部分的金屬氧化物相對於金屬也具有較低的電阻。所以金屬矽化物也是第一個被應用MOS結構中的閘極(gate)、ohmic contacts、光電元件、熱電元件和 Scotty barriers的材料。而最近有許多過渡金屬矽化物,例如:NiSi、CoSi2、TiSi等,皆以化學合成方式被製備出來。
至今,β-FeSi2所有過渡金屬矽化物中唯一被拿來應用在LED元件裡的材料,而從Fe-Si的相圖中,我們可以看到Fe與Si有許多不同的相,例如Fe3Si、FeSi2、Fe5Si3、FeS等;顯示了Fe、Si系統在不同成分比例組成下的複雜性。在這個實驗中,我們以化學氣相傳輸法(chemical vapor transport, CVT)合成β-FeSi2奈米線,此實驗是以FeCl3作為前驅物,並將成長溫度設定在840~900°C,成長時間設定在2到4小時之間,且以80% Ar和20%H2混合氣體當作載流氣體(carrier gas),反應壓力控制在1 torr左右,成功地在Si基板上生成β-FeSi2奈米線。
我們分別以XRD、SEM、EDX、ESCA和TEM對奈米線作結構、形貌與成分的鑑定,XRD顯示出β-FeSi2相的存在;SEM則是發現在成長奈米線前,Si基板上會先成長一層約2~3μm的β-FeSi2薄膜,再成長β-FeSi2奈米線,且奈米線的長度約為5~數十μm,直徑約為100nm;在EDX的分析中,我們可以知道奈米線的組成中,有Si、Fe和O三種元素,且Si的比例遠多於Fe;且以ESCA對試片表面去作分析;在TEM的分析中,我們可以得知奈米線的成長方向為<321 ̅>,且在外層會有一層薄薄的SiO2層,而在I-V電性量測下,可以得到β-FeSi2奈米線的電阻率約為3006μΩ-cm,略低β-FeSi2塊材之電阻率。
雖然到目前為止,矽化鐵奈米結構的生成機制尚不明朗,但是有不同的文獻指出在謹慎小心地控制溫度、壓力、載流氣體流量等基本參數,依舊可以利用CVT法合成出形貌為一維的奈米線或是奈米螺旋狀結構。
[1] S. L. Zhang, M. Ostling. "Metal Silicides in CMOS Technology: Past, Present, and Future Trends.". Crit. Rev. Solid State. (2003), Vol. 28, pp. 1–129.
[2] S. Senthilarasu, R. Sathyamoorthy, S. Lalitha. "Synthesis and Characterization of Β-FeSi2 Grown by Tthermal Annealing of Fe/Si Bilayers for Photovoltaic Applications.". Sol. Energy Mater. Sol. Cells. (2004), Vol. 82, pp. 299–305.
[3] B. E. Borisenko. "Semiconducting Silicides.". Springer. (2000), Vol. 39, p. 348.
[4] C. J. Kim, K. Kang, Y. S. Woo, G. H. Ryu, H. Moon, J. M. Kim, D. S. Zang, M. H. Jo. "Spontaneous Chemical Vapor Growth of NiSi Nanowires and Their Metallic Properties.". Adv. Mater. (2007), Vol. 19, pp. 3637–3642.
[5] C. Y. Lee, M. P. Lu, K. F. Liao, W. F. Lee, C. T. Huang, S. Y. Chen, L. J. Chen. "Free-Standing Single-Crystal NiSi Nanowires with Excellent Electrical Transport and Field Emission Properties.". J.Phys.Chem.C. (2009), Vol. 113, pp. 2286–2289.
[6] K. Seo, K. S. K. Varadwaj, P. Mohanty, S. H. Lee, Y. H. Jo, M. H. Jung, J. H. Kim, B. S. Kim. "Magnetic Properties of Single-Crystalline CoSi Nanowires.". Nano. Lett. (2007), Vol. 7, pp. 1240-1245.
[7] P. Kluth, Q. T. Zhao, S. Winnerl, S. Lenk, S. Mantl. "Fabrication of Epitaxial CoSi2 Nanowires.". Appl. Phys. Lett. (2001), Vol. 79, pp. 824-826.
[8] B. Xiang, Q. X. Wang, Z. Wang, X. Z. Zhang, L. Q. Liu, J. Xu, D. P. Yu. "Synthesis and Field Emission Properties of TiSi2 Nanowires.". Appl. Phys. Lett. (2005), Vol. 86, p. 243103.
[9] D. Leong, M. Harry, K. J. Reeson, K. P. Homewood. "A Silicon/iron-disilicide Light-emitting Diode Operating at a Wavelength of 1.5μm.". NATURE. (1997), Vol. 387, pp. 686-688.
[10] T. W. Ebbesen, P. M. Ajayan. "Large-scale Synthesis of Carbon Nanotubes.". Nature. (1992), Vol. 358, pp. 220-222 .
[11] R. F. Pierret. "Semiconductor Device Fundamentals.". Boston MA : Addison Wesley, (1996).
[12] "Electronic Market Data Book". Washington, D.C. : Electron. Ind. Assoc., (2000).
[13] "Semiconductor Industry Report". Hsinchu, Taiwan : Inst., Ind. Technol. Res., (2000).
[14] Most of the classic device papers are collected in S. M. Sze, Ed., Semiconductor Devices: Pioneering Papers, World Sci., Singapore. (1991).
[15] K. K. Ng. "Complete Guild to Semiconductor Devices". New York : McGraw-Hill, (1995).
[16] D. Kahng, M. M. Atalla. "Silicon-silicon Dioxide Field Induced Surface Devices.". Proc. IRE-AIEE Solid-State Device Res. (1960).
[17] H. V. Kanel, N. Onda, H. Sirringhaus, E. Mullergubler, S. Goncalvesconto, C. Schwarz. "Epitaxial Phase Transitions in the Iron Silicon System.". Appl. Surf. Sci. (1993), Vol. 70/71, pp. 559-561.
[18] J. Desimoni, H. Bernas, M. Behar, X. W. Lin, S. Washburn, Z. Lilientalweber. "Ion-Beam Synthesis of Cubic FeSi2.". Appl. Phys. Lett. (1993), Vol. 62, pp. 306-308.
[19] J. Alvarez, J. J. Hinarejos, E. G. Michel, R. Miranda. "Determination of the Fe/Si(111) Phase Diagram by Means of Photoelectron Spectroscopies.". Surf. Sci. (1993), Vol. 287, pp. 490-494.
[20] N. E. Christensen. "Electronic-Structure of Β-FeSi2.". Phys. Rev. B. (1990), Vol. 42, pp. 7148-7153.
[21] M. Libezny, J. Poortmans, T. Vermeulen, J. Nijs, P. H. Amesz, K. Herz, M. Powalla. "Book of Abstracts of 13th European Photovoltaic Solar Energy Conference and Exhibition.". (1995), Vol. 49, p. PO8B.
[22] "Proc. of 13th European Photovoltaic Solar Energy Conf.". (1995), p. 1326.
[23] M. Riffel, E. Gross,U. Stohrer. "Electrical Contacts for FeSi2 and Higher Manganese Silicide Thermoelectric Elements.". J. Mater. Sci. Mater. Electron. (1995), Vol. 6, pp. 182-185.
[24] T. Suemasu, Y. Negishi, K. Takakura, F. Hasegawa. "Room Temperature 1.6 μm Electroluminescence from a Si-based Light Emitting Diode with Β-FeSi2 Active Region.". Jpn. J. Appl. Phys. (2000), Vol. 39, pp. 1013-1015.
[25] K. M. Geib, J. E. Mahan, R. G. Long, M. Naten, G. Bai. "Epitaxial Orientation and Morphology of β-FeSi2 on (001) Silicon.". J. Appl. Phys. (1991), Vol. 70, pp. 1730-1736 .
[26] Y. Wu, R. Fan, P. Yang. "Block-by-Block Growth of Single-Crystalline Si/SiGe Superlattice Nanowires.". Nano. Lett. (2002), Vol. 2, pp. 83-86.
[27] Y. C. Choi, W. S. Kim, Y. S. Park, S. M. Lee, D. J. Bae, H. Y. Lee, G. S. Park, W. B. Choi, N. S. Lee, J. M. Kim. "Catalytic Growth of β-Ga2O3 Nanowires by Arc Discharge.". Adv. Mater. (2000), Vol. 12, pp. 746-750.
[28] J. Graul, E.Wagner. "Growth Mechanism of Polycrystalline Β-SiC Layers on Silicon Substrate.". Appl. Phys. Lett. (1972), Vol. 21, pp. 67-69.
[29] Y. Y. Wu, P. D. Yang. "Direct Observation of Vapor-Liquid-Solid Nanowire Growth.". J. Am. Soc. (2001), Vol. 123, pp. 3165-3166.
[30] A. M. Morales, C. M. Lieber. "A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires.". Science. (1998), Vol. 279, pp. 208-211.
[31] T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons, W. E. Buhro. "Solution-Liquid-Solid Growth of Crystalline III-V Semiconductors: An Analogy to Vapor-Liquid-Solid Growth.". Science. (1995), Vol. 270, pp. 1791-1794.
[32] Y. W. Wang, L. Zhang, C. H. Liang, G. H. Wang, X. S. Peng. "Catalytic Growth and Photoluminescence Properties of Semiconductor Single-crystal ZnS Nanowires.". Chen. Phys. Lett. (2002), Vol. 357, pp. 314–318.
[33] Y. W. Wang, G. W. Meng, L. Zhang, C. H. Liang, J. Zhang. "Catalytic Growth of Large-Scale Single-Crystal CdS Nanowires by Physical Evaporation and Their Photoluminescence.". Chem. Mater. (2002), Vol. 14, p. 1773-1777
[34] Y. Q. Chen, X. F. Cui, K. Zhang, D. G. Pan, S. Y. Zhang, B. Wang, J. G. Hou. "Bulk-quantity Synthesis and Self-catalytic VLS Growth of SnO2 Nanowires by Lower-temperature Evaporation.". Chem. Phys. Lett. (2003), Vol. 369, pp. 16–20.
[35] H. Y. Peng, N.Wang, X. T. Zhou, Y. F. Zheng, C. S. Lee, S. T. Lee. "Control of Growth Orientation of GaN Nanowires.". Chem. Phys. Lett. (2002), Vol. 359, pp. 241–245.
[36] T. I. Kamins, X. Li, R. S.Williams. "Growth and Structure of Chemically Vapor Deposited Ge Nanowires on Si Substrates.". Nano. Lett. (2004), Vol. 4, pp. 503-506.
[37] S. K. Lee, , H. J. Choi, P. Pauzauskie, P. D. Yang, N. K. Cho, H. D. Park, E. K. Suh, K. Y. Lim, H. J. Lee. "Gallium Nitride Nanowires with a Metal Initiated Metal-organic Chemical Vapor Deposition (MOCVD) Approach.". Phys. Status Solid B. (2004), Vol. 241, pp. 2775–2778.
[38] T. T. Kang, X. Liu, R. Q. Zhang, et al. "InN Nanoflowers Grown by Metal Organic Chemical Vapor Deposition.". Appl. Phys. Lett. (2005), Vol. 89, p. 071113.
[39] Y. Wu, B. Messer, P. Yang. "Superconducting MgB2 Nanowires.". Adv. Mater. (2001), Vol. 13, pp. 1487-1489.
[40] Y. Y. Wu, P. D. Yang. "Direct Observation of Vapor-Liquid-Solid Nanowire Growth.". J. Am. Chem. Soc. (2001), Vol. 123, pp. 3165-3166.
[41] C. C. Chen, C. C. Yeh. "Large-Scale Catalytic Synthesis of Crystalline Gallium Nitride Nanowires.". Adv. Mater. (2000), Vol. 12, pp. 738-741.
[42] M. H. Huang, Y. Wu, H. Feick, W. Weber, P. Yang. "Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport.". Adv. Mater. (2001), Vol. 13, pp. 113-116.
[43] M. Yazawa, M. Koguchi, A. Muto, M. Ozawa, K. Hiruma. "Effect of One Monolayer of Surface Gold Atoms on the Epitaxial Growth of InAs Nanowhiskers.". Appl. Phys. Lett. (1992), Vol. 61, pp. 2051-2053.
[44] Z. H. Lan, C. H. Liang, C. W. Hsu , C. T. Wu , H. M. Lin , S. Dhara , K. H. Chen, L. C. Chen , C. C. Chen. "Nanohomojunction (GaN) and Nanoheterojunction (InN) Nanorods on One-dimensional GaN Nanowire Substrates.". Adv. Funct. Mater. (2004), Vol. 14, pp. 233-237.
[45] X. F. Duan, Y. Huang, Y. Cui, et al. "Indium Phosphide Nanowires as Building Blocks for Nanoscale Electronic and Optoelectronic Devices.". NATURE. (2001), Vol. 409, pp. 66-69.
[46] Y. Cui, C. M. Lieber. "Functional Nanoscale Electronic Devices Assembled using Silicon Nanowire Building Blocks.". SCIENCE. (2001), Vol. 291, pp. 851-853.
[47] Y. Cui, L. J. Lauhon, M. S. Gudiksen, et al. "Diameter-controlled Synthesis of Single-crystal Silicon Nanowires.". Appl. Phys. Lett. (2001), Vol. 78, pp. 2214-2216.
[48] Y. Cui, X. F. Duan, J. T. Hu, et al. "Doping and Electrical Transport in Silicon Nanowires.". J. Phys. Chem. B. (2000), Vol. 104, pp. 5213-5216.
[49] Z. W. Pan, Z. R. Dai, Z. L. Wang. "Nanobelts of Semiconducting Oxides.". SCIENCE. (2001), Vol. 291, pp. 1947-1949.
[50] Y. Qin, X. D. Wang, Z. L. Wang. "Microfibre-nanowire Hybrid Structure for Energy Scavenging.". NATURE. (2008), Vol. 451, pp. 809-U5.
[51] Z. L. Wang. "The New Field of Nanopiezotronics.". MATERIALS TODAY. (2007), Vol. 10, pp. 20-28.
[52] Z. L. Wang. "Nanopiezotronics.". Adv. Mater. (2007), Vol. 19, pp. 889-892.
[53] P. X. Gao, J. H. Song, J. Liu, Z. L. Wang. "Nanowire Piezoelectric Nanogenerators on Plastic Substrates as Flexible Power Sources for Nanodevices.". Adv. Mater. (2007), Vol. 19, pp. 67–72.
[54] Z. L. Wang, J. H. Song. "Piezoelectric Nanogenerators Based on Zinc oxide Nanowire Arrays.". SCIENCE. (2006), Vol. 312, pp. 242-246.
[55] X. D. Wang, J. Zhou, J. H. Song, J. Liu, N. S. Xu, Z. L.Wang. "Piezoelectric Field Effect Transistor and Nanoforce Sensor Based on a Single ZnO Nanowire.". Nano. Lett. (2006), Vol. 6, pp. 2768-2772.
[56] J. H. Song, J. Zhou, Z. L. Wang. "Piezoelectric and Semiconducting Coupled Power Generating Process of a Single ZnO Belt/wire. A Technology for Harvesting Electricity from the Environment.". Nano. Lett. (2006), Vol. 6, pp. 1656-1662.
[57] B. A. Buchine, W. L. Hughes, F. L. Degertekin, Z. L. Wang. "Bulk Acoustic Resonator Based on Piezoelectric ZnO Belts.". Nano. Lett. (2006), Vol. 6, pp. 1155-1159.
[58] Z. L. Wang. "Zinc Oxide Nanostructures: Growth, Properties and Applications.". J Phys.-Consens. Mat. (2004), Vol. 16, pp. R829-R858.
[59] Z. R. Dai, Z. W. Pan, Z. L. Wang. "Ultra-long Single Crystalline Nanoribbons of Tin oxide.". Solid State Commun. (2001), Vol. 118, pp. 351-354.
[60] Y. Huang, S. L. Yue, Z. L. Wang, Q. Wang, C. Y. Shi, Z. Xu, X. D. Bai, C. C. Tang, C. Z. Gu. "Preparation and Electrical Properties of Ultrafine Ga2O3 Nanowires.". J. Phys. Chem. B. (2006), Vol. 110, pp. 796-800.
[61] N. D. Zakharov, P. Werner , G. Gerth , L. Schubert, L. Sokolov , U. Gosele. "Growth Phenomena of Si and Si/Ge Nanowires on Si(111) by Molecular Beam Epitaxy.". J. Cryst. Growth. (2006), Vol. 290, pp. 6-10.
[62] S. Kar, B. N. Pal , S. Chaudhuri, D. Chakravorty. "One-dimensional ZnO Nanostructure Arrays: Synthesis and Characterization.". J. Phys. Chem. B. (2006), Vol. 110, pp. 4605-4611.
[63] Z. H. Lan, C. H. Liang, C. W. Hsu , C. T. Wu , H. M. Lin , S. Dhara , K. H. Chen, L. C. Chen , C. C. Chen. "Nanohomojunction (GaN) and Nanoheterojunction (InN) Nanorods on One-dimensional GaN Nanowire Substrates.". Adv. Funct. Mater. (2004), Vol. 14, pp. 233-237.
[64] S. K. Chan, N. Liu , Y. Cai , N. Wang , G.. K. L. Wong , I. K. Sou. "Molecular Beam Epitaxy-grown ZnSe Nanowires.". J. Electron Mater. (2006), Vol. 35, pp. 1246-1250.
[65] R. Q. Zhang, Y. Lifshitz, S. T. Lee. "Oxide-Assisted Semiconductor Nanowire Growth.". Adv. Mater. (2003), Vol. 15, pp. 635-640.
[66] Y. D. Yin, D. G. Zhang, Y. N. Xia. "Synthesis, and Characterization of MgO Nanowires through a Vapor-Phase Precusor Mthod.". Adv. Funct. Mater. (2002), Vol. 12, pp. 293-298.
[67] W. S. Shi, H. Y. Peng, N. Wang, C. P. Li, L. Xu, C. S. Lee, R. Kalish, S. T. Lee. "Free-Standing Single Crystal Silicon Nanoribbons.". J. Am. Chem. Soc. (2001), Vol. 123, pp. 11095-11096.
[68] S. T. Lee, N. Wang, C. S. Lee. "Semiconductor Nanowires: Synthesis, Structure and Properties.". Mater. Sci. Eng. A. (2000), Vol. 286, pp. 16-23.
[69] N. Wang, Y. H. Tang, Y. F. Zhang, C. S. Lee, I. Bello, S. T. Lee. "Si Nanowires Grown from Silicon Oxide.". Chem. Phys. Lett. (1999), Vol. 299, pp. 237-242 .
[70] Y. G. Sun, Y. N. Xia. "Large-scale Synthesis of Uniform Silver Nanowires Through a Soft, Self-seeding, Polyol Process.". Adv. Mater. (2002), Vol. 14, pp. 833-837.
[71] H. F. Yan, Y. J. Xing, Q. L. Hang, D. P. Yu, Y. P. Wang, J. Xu, Z. H. Xi, S. Q. Feng. "Growth of Amorphous Silicon Nanowires via a Solid-Liquid-Solid Mechanism.". Chem. Phys. Lett. (2002), Vol. 323, pp. 224-228.
[72] P. Yu, Y. J. Xing, Q. L. Hang, H. F. Yan, J. Xu, Z. H. Xi, S. Q. Feng. "Controlled Growth of Oriented Amorphous Silicon Nanowires via a Solid-Liquid-Solid (SLS) Mechanism.". Physica. E. (2001), Vol. 9, pp. 305-309.
[73] D. Routkevitch, T. Bigioni, M. Moskovits, J. M. Xu. "Electrochemical Fabrication of CdS Nanowire Arrays in Porous Anodic Aluminum Oxide Templates.". J. Phys. Chem. (1996), Vol. 100, pp. 14037-14047.
[74] J. S. Lee, G. H. Gu, H. Kim, K. S. Jeong, J. Bae, J. S. Suh. "Growth of Carbon Nanotubes on Anodic Aluminum Oxide Templates: Fabrication of a Tube-in-tube and Linearly Joined Tube.". Chem. Mater. (2001), Vol. 13, pp. 2387-2391.
[75] K. T. Yong, Y. Sahoo, M. T. Swihart, P. M. Schneeberger, P. N. Prasad. "Templated Synthesis of Gold Nanorods (NRs): The Effects of Cosurfactants and Electrolytes on the Shape and Optical Properties.". Top Catal. (2008), Vol. 47, pp. 49-60.
[76] L. Ouyang, E. S. Thrall, M. M. Deshmukh, H. Park. "Vapor-Phase Synthesis and Characterization of e-FeSi Nanowires.". Adv.Mater. (2006), Vol. 18, pp. 1437–1440.
[77] N. E. Christensen. "Electronic-Structure of Β-FeSi2.". Phys. Rev. B. (1990), Vol. 42, pp. 7148-7153.
[78] R. Eppenga. "Ab Initio Band-Structure Calculation of the Semiconductor β-FeSi2.". J. Appl. Phys. (1990), Vol. 68, pp. 3027-3029.
[79] Z. Yang, K. P. Homewood, M. S. Finney, M. A. Harry, K. J. Resson. "Optical Absorption Study of Ion Beam Synthesized Polycrystalline Semiconducting FeSi2.". J. Appl. Phys. (1995), Vol. 78, pp. 1958-1963.
[80] C. A. Dimitriadis, J. H. Werner, S. Logothtidis, M. Stutzmann, J. Weber, R. Nesper. "Electronic Properties of Semiconducting FeSi2 Films.". J. Appl. Phys. (1990), Vol. 68, pp. 1726-1734.
[81] M. C. Bost, J. E. Mahan. "A Clarification of the Index of Refraction of Β-Iron Disilicide.". J. Appl. Phys. (1998), Vol. 64, pp. 2034-2037.
[82] G. Aeppli, J. F. DiTusa. "Undoped and doped FeSi or how to make a heavy fermion metal with three of the most common elements.". Mater. Sci. Eng. B (1999), Vol.63, pp.119.
[83] A. L.Schmitt, M. J.Bierman, D. Schmeisser, F.J.Himpsel, S. Jin. "Synthesis and Properties of Single-Crystal FeSi Nanowires.". Nano Letters. (2006), Vol.6, pp. 1617 -1621.
[84] K. Seo, S. Lee, Y. Jo, M. H. Jung, J. Kim, D. G. Churchill, U. Kim. "Room Temperature Ferromagnetism in Single-Crystalline Fe5Si3 Nanowires." J. Phys. Chem. C. (2009), Vol.113, pp. 6902-6905.
[85] J. I. Tani, H. Kido. "Electrical properties of Co-doped and Ni-doped b-FeSi2. ". J. Appl. Phys. (1998), Vol.84, pp.1408-1411.
[86] G. Ottaviani, K. N. Tu, P. Psaras, C. Nobili. "In Situ Resistivity Measurement of Cobalt Silicide Formation.". J. Appl. Phys., (1987), Vol.62, pp.2290-2294.
[87] C. I. Tsai, P. H. Yeh, C. Y. Wang, H. W. Wu, U. S. Chen, M. Y. Lu, W. W. Wu, L. J. Chen, Z. L. Wang. "Cobalt Silicide Nanostructures: Synthesis, Electron Transport, and Field Emission Properties.", Cryst. Growth Des., (2009), Vol.9, pp.4514-4518.
[88] R. A. Donatona, K. Maexb. "Co Silicide Formation on SiGeC/Si and SiGe/Si Layers.". Appl. Phys. Lett., (2007), Vol.70, pp.1266-1268.
[89] A. L. Schmitt, L. Zhu, D. Schmeisser, F. J. Himpsel, S. Jin. " Metallic Single-Crystal CoSi Nanowires via Chemical Vapor Deposition of Single-source Precursor .". J. Phys. Chem. B, (2006), Vol.110, pp. 18142-18146.
[90] K. Maex,V. R. M. "Properties of Metal Silicides", INSPEC, The Institution of Electrical Engineers, London,(1995)
[91] Y. P. Song, A. L. Schmitt, S. Jin. "Ultralong Single-Crystal Metallic Ni2Si
Nanowires with Low Resistivity.". Nano Lett. (2009), Vol.7, pp.965-969.
[92] K. Y. Seo, S. H. Lee, H. Yoon, J. H. In, K. S. K. Varadwaj, Y. H. Jo, M. H. Jung, J. H. Kim, B. S. Kim. "Composition-Tuned ConSi Nanowires: Location-Selective Simultaneous Growth along Temperature Gradient.". ACS NANO. (2009), Vol.3, pp.1145–1150.
[93] C. Y. Lee, M. P. Lu, K. F. Liao, W. W. Wu, L. J. Chen. "Vertically Well-aligned Epitaxial Ni31Si12 Nanowire Arrays with Excellent Field Emission Properties.". Appl. Phys. Lett., (2008), Vol.93, pp.113109.
[94] T. Iijima, A. Nishiyama, Y. Ushiku, T. Ohpro. I. Kunishima, K. Suguro, H. Iwai. "A Novel Selective Ni3Si Contact Plug Technique for Deep-submicron ULSIs.". IEEE, (1992), pp.70-71.
[95] Y. P. Song, S. Jin. "Synthesis and Properties of Single-crystal β-3-Ni3Si nanowires.". Appl. Phys. Lett., (2007), Vol.90, pp.173122.
[96] T. C. Banwell, X. A. Zhao, M. A. Nicolet. "Effects of Gon Irradiation on Conductivity of CrSi2 Thin Films.". J. Appl. Phys., (1986), Vol.59, pp.3077-3080
[97] K. Y. Seo, S. K. Varadwaj, D. K. Cha, J. H. In, J. Y. Kim, J. H. Park, B. S. Kim. "SynthesisandElectricalPropertiesofSingleCrystallineCrSi2 Nanowires.". J. Phys. Chem. C, (2007), Vol.111, pp.9072-9076.
[98] J. Hu, M. Ameen, G. Leusink, D. Webb, J. T. Hillman. " Electrical Properties of Ti/TiN Films Prepared by Chemical Vapor Deposition and Their Applications in Submicron Structures as Contact and Barrier Materials.". Thin Solid Films, (1997), Vol.308, pp. 589-593.
[99] C. M. Chang, Y. C. Chang, Y. A. Chung, C. Y. Lee, L. J. Chen. "Synthesis and Properties of the Low Resistivity TiSi2 Nanowires Grown with TiF4 Precursor .". J. Phys. Chem. C. (2009), Vol.113, pp.17720-17723
[100] J. M. Higgins, A. L. Schmitt, I. A. Guzei, S. Jin. "Higher Manganese Silicide Nanowires of Nowotny Chimney Ladder Phase.". J. Am. Chem. Soc. (2007), Vol.130, pp.16086–16094.