簡易檢索 / 詳目顯示

研究生: 林姵萱
Lin, Pei Syuan
論文名稱: 考慮多個重工隨機系統之系統可靠度
System Reliability of Stochastic Systems with Multiple Reworking
指導教授: 桑慧敏
Song, Whey Ming
口試委員: 張國浩
劉復華
蔡篤銘
侯建良
學位類別: 碩士
Master
系所名稱: 工學院 - 工業工程與工程管理學系
Department of Industrial Engineering and Engineering Management
論文出版年: 2016
畢業學年度: 105
語文別: 中文
論文頁數: 116
中文關鍵詞: 隨機系統系統可靠度重工模擬解析解
外文關鍵詞: stochastic system, system reliability, rework, simulation, analytical results
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文的目的是以解析解計算所謂的 「系統可靠度」,定義為某隨機系統最後的產出值會大於或等於一個預訂需求量的機率。本文研究的隨機系統是指由許多工作站連結而成的網路,其中每個工作站都有個別的隨機產能限制,且每個進入工作站的待加工品有特定的比率成為良品或不良品。上述定義的 「系統可靠度」 是隨機系統的一個重要績效指標。製造系統、網際網路系統、物流系統都是上述隨機系統的應用。
    根據最新文獻 [19] , 有18篇文獻具有共同的錯誤,使得他們計算出來的系統可靠度值是錯誤的。雖然此最新文獻提出的 Song Rule 是一個正確計算可靠度的解析法,但是只限於單一生產線重工狀況,而且該方法計算相當費時。本研究首先提出改良版Song Rule 以減少計算時間,在本論文的許多例子中顯示減少的計算時間可高達99%。更進一步,本論文也將改良版的 Song Rule 延伸至兩條生產線多個重工的狀況。本論文的解析法都使用模擬法得到驗證。


    The goal of this thesis is to obtain the so-called “system reliability”, defined as the probability that the production output meets a predetermined demand for a stochastic system with many workstations, each of which has random capacity following a discrete probability distribution. Moreover, with positive probability, a workstation successfully passes an input unit to the next node in the network. The “system reliability” is an important performance measure in stochastic systems. The application of stochastic systems are manufacturing system, network system and logistics system.
    According to the latest literature [19], we have found that eighteen papers have actually incorrectly calculated the system reliability. Paper [19] presents a correct version of analytical approach, named Song Rule, limited to one production line with one rework system. Motivated by the problem that the Song rule is computational inefficient, this thesis proposes an extended Song rule to improve the efficiency of computation. Moreover, this thesis extends the Song rule to present a general analytical theory for networks with multiple reworks. The
    proposed method is more computational efficient than the Song rule. Specifically, the proposed extended Song rule accomplishes an computation-time-reduction of above 90% for networks with more than 2 workstations. Moreover, all analytical results presented in this paper are validated via simulation approaches including C and Flexsim.

    致謝 i 摘要 iii 英文摘要 iv 目錄 v 表目錄 vii 圖目錄 viii 第1 章緒論 1 1.1 目的. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 動機. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 符號定義. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.4 以符號描述問題. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.4.1 六類隨機系統. . . . . . . . . . . . . . . . . . . . . . . . . . 4 第2 章文獻回顧及延伸 8 2.1 回顧及延伸探討18篇文獻. . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.1 18篇文獻所包括的隨機系統整理. . . . . . . . . . . . . . . . . 8 2.1.2 18篇文獻的邏輯(錯誤的邏輯) . . . . . . . . . . . . . . . . . . 11 2.2 文獻[19] Song Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 第3 章改良版單一生產線單一重工製程的系統可靠度 19 3.1 改良版的單一生產線單一重工製程的系統可靠度. . . . . . . . . . . . . 19 3.2 單一生產線單一重工製程的系統可靠度模擬解. . . . . . . . . . . . . . 22 3.3 實例. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 第4 章單一生產線多個重工製程的系統可靠度 28 4.1 單一生產線多個重工製程的系統可靠度解析解. . . . . . . . . . . . . . 28 4.2 單一生產線多個重工製程的系統可靠度模擬解. . . . . . . . . . . . . . 31 4.3 實例. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 第5 章兩條生產線多個重工製程的系統可靠度 34 5.1 兩條生產線多個重工製程的可靠度解析解. . . . . . . . . . . . . . . . 34 5.2 兩條生產線多個重工製程的系統可靠度模擬解. . . . . . . . . . . . . . 36 5.3 實例. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 第6 章結論、貢獻與未來研究與建議 38 6.1 結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 6.2 貢獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 6.3 未來研究與建議. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

    1. Fiondella, L., Lin, Y.-K. and Chang, P.-C. (2015). System performance and reliability modeling of a stochastic-flow production network: a confidence-based approach. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 45, 11 , 1437-1447.
    2. Gu, C., He, Y., Wei, Y. and Ming, X. (2015). Reliability modeling of manufacturing systems based on the task network evolved by key quality characteristics. The First International Conference on Reliability Systems
    Engineering (2015 ICRSE).
    3. Lin, Y.-K. and Chang, P.-C. (2011). Reliability evaluation of a manufacturing network with reworking action. International Journal of Reliability,
    Quality and Safety Engineering, 18, 5, 445-461.
    4. Lin, Y.-K., Chang, P.-C. and Chen, J. C. (2012). Reliability evaluation for a waste-reduction parallel-line manufacturing system. Journal of Cleaner Production, 35, 93-101.
    5. Lin, Y.-K. and Chang, P.-C. (2012a). System reliability of a manufacturing network with reworking action and different failure rates. International Journal of Production Research, 50, 23, 6930-6944.
    6. Lin, Y.-K. and Chang, P.-C. (2012b). Evaluate the system reliability for a manufacturing network with reworking actions. Reliability Engineering
    and System Safety, 106, 127-137.
    7. Lin, Y.-K. and Chang, P.-C. (2012c). Reliability evaluation for a manufacturing network with multiple production lines. Computers & Industrial Engineering, 63, 1209-1219.
    8. Lin, Y.-K. and Chang, P.-C. (2013a). Reliability assessment for a stochastic manufacturing system with reworking actions. Journal of the Chinese Institute of Engineers, 36, 3, 382-390.
    9. Lin, Y.-K. and Chang, P.-C. (2013b). A novel reliability evaluation technique for stochastic-flow manufacturing networks with multiple production lines. IEEE Transactions on Reliability, 62, 1, 92-104.
    10. Lin, Y.-K. and Chang, P.-C. (2013c). Reliability of a production system with intersectional lines. Journal of Engineering Manufacture, 1-11.
    11. Lin, Y.-K. and Chang, P.-C. (2013d). Reliability-based performance indicator for a manufacturing network with multiple production lines in parallel. Journal of Manufacturing Systems, 32, 147-153.
    12. Lin, Y.-K., Huang S.-F. and Chang, P.-C. (2013). System reliability evaluation of a touch panel manufacturing system with defect rate and reworking.
    Reliability Engineering and System Safety, 118, 51-60.
    13. Lin, Y.-K., Chang, P.-C. and Chen, J.C. (2013). Performance evaluation for a footwear manufacturing system with multiple production lines and different station failure rates. International Journal of Production Research, 51, 5, 1603-1617.
    14. Lin, Y.-K. and Chang, P.-C. (2014). Decision making procedure of demand satisfaction and production policy for capacitated production systems. Expert Systems with Applications, 41, 723-734.
    15. Lin, Y.-K. and Chang, P.-C. (2015). Demand satisfaction and decision-making for a PCB manufacturing system with production lines in parallel. International Journal of Production Research, 53, 11 , 3193-3206.
    16. Lin, Y.-K., Chang, P.-C., and Huang, C.H. (2016). System reliability evaluation of a multi-state manufacturing in book Quality and Reliability Management
    and its Applications. Springer-Verlag, London. 117-143.
    17. Song, W.-M. T. and Schmeiser, B. (2009). Omitting Meaningless Digits in Point Estimates: the Probability Guarantee of Leading-Digit Rules, Operations Research. 57, 109 -117.
    18. Song, W.-M. T., and Schmeiser B.(2011). Displaying statistical point estimates using the leading-digit rule. IIE Transaction. 43, 851-862.
    19. Song, W.-M. T. (2016). Simulation and the Song Rule as Spotters and Validators of Analytical Results —A Note Correcting “System Reliability Results” in a Review of the Literature. the Summer Computer Simulation Conference (SCSC), Montreal, Canada, July 24-27, 2016.
    20. Yang, T. and Yang, Y. (2013). Reliability evaluation of collaborative product design process considering redesigning activities. Information Technology Journal, 12, 21, 6325-6329.
    21. Yang, T., Yang, Y. and Xue, C.M. (2014). Conflict analysis between task iteration and design capabilities in collaborative product development. International Journal of Security and Its Applications, 8, 2, 375-386.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE