簡易檢索 / 詳目顯示

研究生: 吳鴻毅
Wu, Hung-Yi
論文名稱: 負壁過熱度之迷你流道中氣體輔助蒸發與沸騰之證實
Confirmation of Gas-assisted Evaporation and Boiling in Minichannels with Negative Wall Superheat
指導教授: 潘欽
Pan, Chin
口試委員: 楊建裕
Yang, Chien-Yuh
陳紹文
Chen, Shao-Wen
傅本然
Fu, Ben-Ran
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 102
中文關鍵詞: 雙相流氣體輔助蒸發熱傳增益比例沸點降低氣液分離蒸氣比例蒸發效率
外文關鍵詞: Two-phase flow, gas-assisted evaporation, heat transfer enhancement, lower saturation temperature, vapor quality, evaporation efficiency, gas-liquid separation
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討雙迷你流道氣體輔助蒸發器的熱傳性能並量化、研究其在負壁過熱度下的蒸發。此一蒸發器之作動原理是以濃度99.8%的乙醇為工作流體,在其中通入輔助氣體─氦氣,使其分壓下降進而造成蒸發的起始溫度下降,而可以導致蒸發致冷的功效。本研究設計加熱面積為50 mm × 18 mm的迷你雙流道,並且在進口區流道底部鑽直徑0.7 mm的氣體進口孔,使得乙醇流體可以將氦氣帶入流道形成氣液雙相流。本研究之乙醇與氦氣之表像速度分別為 、 與 及 、 及 ,以探討此等實驗條件下的對流蒸發與沸騰熱傳現象。為確認負壁過熱度的蒸發現象,本研究在流道出口設計一氣液分離器及蒸汽冷凝裝置,以量化流道內的蒸發及蒸發率。實驗結果顯示,在給定固定的乙醇表像速度與壁過熱度之條件下,熱通率會隨著氦氣流量上升而上升。其最大熱通率皆發生在本研究的最高壁過熱度約10 °C (受限加熱源耐溫)與氦氣表像速度 時。如:在乙醇表像速度 、 、 ,其最大移熱能力分別為192 kW/m2、258 kW/m2、321 kW/m2。乙醇在加入輔助氣體後,在壁過熱度小於0 °C時,有很大的熱傳增益比例,最大值發生在壁過熱度-10 °C至0 °C之間及乙醇表像速度 與氦氣表像速度 時,最大增益效果為275%。研究結果說明了輔助氣體的確可以降低乙醇的分壓,使其在更低的溫度即有蒸發現象發生。乙醇在固定壁過熱度之下,其蒸氣比例隨著氦氣表像速度升高而升高。進階的蒸發效率分析中,即使在負壁過熱度的條件下,從管壁擴散進來的熱量的確有顯著的比例被用來進行蒸發。其中,乙醇表像速度 與氦氣表像速度 時,蒸氣效率在壁過熱度小於0 oC的區域,最高可達63%。實驗中,另以高速攝影機輔助拍攝雙相流動型態,在雙相流動型態的觀察中,發現乙醇在加入輔助氣體後,且在沒有加熱的情況下,依氦氣流量之不同,會呈現不同長度的彈狀流型態。加熱之後,彈狀氣泡的長度明顯變長,氣液之間的相互作用亦變為更加劇烈。在流動型態上,也佐證了熱傳增益的原因。


    The present study investigates the heat transfer characteristic of a gas-assisted evaporator and quantifies the contribution of evaporation under a condition with negative wall superheat. The working principle of a gas-assisted evaporator is to reduce the partial pressure of the working fluid by adding an assistant gas into the coolant. The working fluid may then evaporate at a temperature significantly lower than its normal boiling point with the presence of an assistant gas. Moreover, the presence of the gas phase may also agitate the liquid flow and further enhance heat transfer. Therefore, the heat transfer in the system may be significantly enhanced. In this study, we design test sections with dual mini-channels with an inlet hole located at the channel bottom near the inlet region for the gas-added. The gasoline imported hole makes helium mix with the ethanol flow by a T-junction. The superficial velocity is , and for the ethanol flow and , and for the helium flow in the present study. An innovative gas-liquid separator and condensing unit is designed at the outlet region to confirm and quantity the ethanol evaporated. The heat transfer and boiling two-phase flow phenomenon under the conditions above-mentioned are thoroughly investigated. The results of the study reveal that the heat flux rises while the flow rate of helium increases under a given ethanol flow rate. Due to the limitation of the power supply, the maximum heat flux take place when the wall superheat is about 10 °C and the helium superficial velocity is . For example, the maximum heat flux is 192 kW/m2, 258 kW/m2, 321 kW/m2 with ethanol superficial velocity , and , respectively. The better heat transfer enhancement is demonstrated at wall superheat below 0 °C after the helium is added. Under the condition of a low ethanol superficial velocity of and a high helium superficial velocity of and wall superheat between -10 °C to 0 °C, the enhancement reaches the maximum value of 275% in the present study. The results confirm the gas-assisted evaporation at a temperature significantly below the normal boiling point of the working fluid. At a constant wall superheat, the quality of vapor increases with increasing the helium superficial velocity. The measurement of ethanol vapor condensate indicates that the contribution of evaporation heat flux may account for up to 63% of wall heat flux at wall superheat under 0 °C. In the experiment, a high-speed video camera is used to photography the flow pattern. The flow pattern shows that the slug bubble will emerge as different length with the different helium superficial velocity without heating. The slug bubble obviously become longer and the interaction between gas and liquid is significant. The flow pattern variation provide another proof for the reason in heat transfer enhancement.

    摘要 I Abstract III 致謝 V 目錄 VI 表目錄 X 圖目錄 XI 符號說明表 XV 第一章 緒論 1 1.1 前言 1 1.2 擴散吸收式冷凍空調循環 3 1.3 研究動機與目的 5 1.4 研究方法 6 1.5 論文架構 7 第二章 文獻回顧 8 2.1 擴散吸收式冷凍空調循環研究 8 2.2 不同型態熱傳強化研究 10 2.3 氣體輔助蒸發研究 12 2.4 氣體與液體混和方式相關研究 14 2.5 氣體與液體混和對熱傳影響之研究 17 第三章 氣體輔助蒸發器實驗系統與方法 19 3.1 實驗測試段 19 3.1.1 測試段設計 19 3.1.2 絕熱模組 23 3.1.3 實驗部件組裝 25 3.2 氣液分離器與冷凝系統 28 3.2.1 氣液分離裝置工件設計 28 3.2.2 氣液分離裝置組裝 29 3.2.3 氣液分離與冷凝系統原理 30 3.3 實驗系統設計 32 3.3.1 實驗環路系統 32 3.3.2 實驗設備簡介 34 3.4 實驗步驟 38 第四章、氣體輔助蒸發器實驗數據分析 41 4.1 沸騰熱傳數據分析方法 41 4.1.1 單流體熱傳分析 41 4.1.2 雙流體熱傳分析 43 4.2 熱傳增益比例 45 4.2.1 熱傳增益比例分析 45 4.3 乾度分析 47 4.3.1 出口蒸氣乾度量測 47 4.3.2 出口蒸氣乾度理論值計算 47 4.3.3 蒸發效率分析 48 4.3.4 蒸發效率理論值計算 48 4.3.5 氣液表像速度分析 48 4.4 誤差分析 50 4.4.1 單相流誤差分析 50 4.4.2 雙相流誤差分析 51 第五章、實驗結果與討論 53 5.1 迷你流道氣體輔助實驗中熱傳與蒸發之討論 53 5.2 輔助氣體之流量效應 54 5.2.1 乙醇表像速度 54 5.2.1.1 沸騰曲線與雙相流動型態變化 54 5.2.1.2 熱傳增益比例與蒸氣乾度之影響 60 5.2.2 乙醇表像速度 64 5.2.2.1 沸騰曲線與雙相流動型態變化 64 5.2.2.2 熱傳增益比例與蒸氣乾度之影響 69 5.2.3 乙醇表像速度 73 5.2.3.1 沸騰曲線與雙相流動型態變化 73 5.2.3.2 熱傳增益比例與蒸氣乾度之影響 78 5.3 乾度理論模式計算結果之討論 82 5.4 蒸發效率理論值之討論 85 5.5 經驗式模型之發展 86 第六章、結論與未來工作 93 6.1 結論 93 6.2 未來研究建議 95 參考文獻 96

    [1] 張素美, 「2017能源技術展望—促進能源技術轉型重點解析」, 2017,p.1.
    [2] 經濟部能源局,「 經濟部能源局年報」, 2012, p.77.
    [3] Mora Shapiro, Boettner, Bailey,” Principles of Engineering Thermodynamics 7th”, p.537
    [4] Icbibse journal, “Module 10: Absorption refrigeration”, 2009.11
    https://www.cibsejournal.com/cpd/modules/2009-11/A.
    [5] Taieb, K. Mejbri, A. Bellagi, “Detailed thermodynamic analysis of a diffusion-absorption refrigeration cycle”, Energy, 115 (2016) 418-434.
    [6] K.J. Kim, Z. Shi, J. Chen, K.E. Herold, “Hotel room air conditioner design based on the diffusion-absorption cycle”, ASHRAE Tech. Data Bull, 11 (2) (1995) 47–58.
    [7] A. S. Rattner, S. Garimella, “Low-source-temperature diffusion absorption refrigeration. Part I: Modeling and cycle analysis”, International Journal of Refrigeration, 65 (2016) 287-311.
    [8] J. L. Rodríguez-Muñoz, J. M. Belman-Flores, “Review of diffusion–absorption refrigeration technologies”, Renewable and Sustainable Energy Reviews, 30(2014)145–153.
    [9] B. R. Fu, Y .C. Chen .C. Pan, “Gas-assisted evaporation and boiling in minichannels”, International Journal of Heat and Mass Transfer, 116 (2018) 1044–1053
    [10] J. Chen, K. J. Kim, K. E. Herold, “Performance enhancement of a diffusion-absorption refrigerator”, International Journal of Refrigeration, 19( 3) (1996) 208-218.
    [11] M. I. S. Adjibadea, A. Thiama, C. Awantob, “Dynamic investigation of the diffusion absorption refrigeration system NH3-H2O-H2”, Case Studies in Thermal Engineering, 10 (2017) 468–474.
    [12] P. Srikhirin, S. Aphornratana, “Investigation of a diffusion absorption refrigerator”, Applied Thermal Engineering, 22 (2002) 1181–1193.
    [13] M. C. Georg, P. B. C. Von, “Refrigerator”, Google Patents, (1928)
    [14] U. Jacob, U. Eicker, D. Schneider, A.H. Taki, M.J. Cook, “Simulation and experimental investigation into diffusion absorption cooling machines for air-conditioning applications,” Applied Thermal Engineering, 28 (2008) 1138-1150.
    [15] A. Zohar, M. Jelinek , A. Levy , I. Borde, “Performance of diffusion absorption refrigeration cycle with organic working fluids”, International Journal of Refrigeration, 32(2009)1241-1246.
    [16] Q. Wang, L. Gong, J.P. Wang, T. F. Sun, K. Cui, G. M. Chen, “A numerical investigation of a diffusion absorption refrigerator operating with the binary refrigerant for low temperature applications”, Applied Thermal Engineering, 31(2011) 1763 - 1769
    [17] A. Sozen, E.Ozbas, T. Menlik, M.T. Cakır, M. Guru, K. Boran, “Improving the thermal performance of diffusion absorption refrigeration system with alumina nanofluids: An experimental study”, International Journal of Refrigeration, 44 (2014) 73-80
    [18] D. Deng, W. Wan, Y. Qin, J. Zhang, X. Chu, “Flow boiling enhancement of structured microchannels with micro pin fins”, International Journal of Heat and Mass Transfer, 105 (2017) 338–349
    [19] K. H. Ho, S.T. Newman, “State of the art electrical discharge machining (EDM), International Journal of Machine Tools & Manufacture, 43 (2003) 1287–1300.
    [20] IPG, No: YLP-1-100-30-30-HC-RG, Russia
    [21] W.C. Liu, C.Y. Yang, “Two-phase flow visualization and heat transfer performance of convective boiling in micro heat exchangers”, Experimental Thermal and Fluid Science, 57 ( 2014) 358-364.
    [22] Y. S. Lim, S. C. M. Yu, N.T. Nguyen, “Flow visualization and heat transfer characteristics of gas–liquid two-phase flow in microtube under constant heat flux at wall”, International Journal of Heat and Mass Transfer, 56 (2013) 350–359.
    [23] P. A. Walsh, E.J. Walsh, Y. S. Muzychka, “Heat transfer model for gas–liquid slug flows under constant flux”, International Journal of Heat and Mass Transfer 53 (2010) 3193–3201.
    [24] P. Srikhirin, S. Aphornratana, S. Chungpaibulpatana, “A review of absorption refrigeration technologies”, Renewable and Sustainable Energy Reviews, 5 (2001) 343–372.
    [25] A. Zohar, M. Jelinek, A. Levy, I. Borde, “Numerical investigation of a diffusion absorption refrigeration cycle”, International Journal of Refrigeration, 28 (2005) 515–525.
    [26] A. Acuña, N. Velázquez, J. Cerezo, “Energy analysis of a diffusion absorption cooling system using lithium nitrate, sodium thiocyanate and water as absorbent substances and ammonia as the refrigerant”, Applied Thermal Engineering, 51 (2013) 1273e1281.
    [27] F. Schmid, K. Spindler, “Experimental investigation of the auxiliary gas circuit of a diffusion absorption chiller with natural and forced circulation”, international journal of refrigeration, 70(2016) 84 – 92.
    [28] W. I. Aly, M. Abdo, G. Bedair, A. E. Hassaneen, “Thermal performance of a diffusion absorption refrigeration system driven by waste heat from diesel engine exhaust gases”, Applied Thermal Engineering, 114 (2017) 621–630.
    [29] S. Saisorn, P. Kuaseng, S. Wongwises, “Heat transfer characteristics of gas–liquid flow in horizontal rectangular micro-channels”, Experimental Thermal and Fluid Science, 55 (2014) 54-61.
    [30] J. Yue, L. Luo, Y. Gonthier, G. Chen, Q. Yuan, “An experimental investigation of gas–liquid two-phase flow in single microchannel contactors”, Chemical Engineering Science, 63 (2008) 4189-4202.
    [31] D. A. P. M. K. Akbar, S. M. Ghiaasiaan, “On gas-liquid two-phase flow regimes in microchannels”, International Journal of Multiphase Flow, 29 (2003) 855-865.
    [32] K. Triplett, S. Ghiaasiaan, S. Abdel-Khalik, D. Sadowski, “Gas–liquid two-phase flow in microchannels Part I: two-phase flow patterns”, International Journal of Multiphase Flow, 25(3) (1999) 377-394.
    [33] K. Triplett, S. Ghiaasiaan, S. Abdel-Khalik, A. LeMouel, B. McCord, “Gas–liquid two-phase flow in microchannels: part II: void fraction and pressure drop”, International Journal of Multiphase Flow, 25(3) (1999) 395-410.
    [34] W. Sun, Y. Liu, K. He, S. Wang, “The phase distribution of gas-liquid two-phase flow in microimpacting Tjunctions with different branch channel diameters”, Chemical Engineering Journal 333(2018)34-32.
    [35] N. Saba, R.T. Lahey, “The analysis of phase separation phenomena in branching conduits”, Int. J. Multiph. Flow, 10 (1984) 1-20.
    [36] B. J. Azzopardi, P. B. Whalley, “The effect of flow patterns on two-phase flow in a T junction”, Int. J. Multiph. Flow, 8 (1982) 491-507
    [37] A. Azzi, A. Al-Attiyah, Q. Liu, W. Cheema, B.J. Azzopardi, “Gas–liquid two-phase flow division at a micro-T-junction”, Chemical Engineering Science, 65(2010) 3986–3993.
    [38] J. Chen, S. Wang, H. Ke, S.Cai, Y. Zhao, “Gas–liquid two-phase flow splitting at microchannel junctions with different branch angles”, Chemical Engineering Science, 104(2013) 881–890.
    [39] T. Ziegenhein , D. Lucas, “Observations on bubble shapes in bubble columns under different flow”, Experimental Thermal and Fluid Science conditions, 85 (2017) 248–256.
    [40] O. Dinaryanto, Y. Ardean Kurnianto Prayitno , A. Irfan Majid, A. Zidni Hudaya,Y. Agus Nusirwan, A. Widyaparaga, Indarto, Deendarlianto, “Experimental investigation on the initiation and flow development of gas-liquid slug two-phase flow in a horizontal pipe”, Experimental Thermal and Fluid Science, 81 (2017) 93–108.
    [41] S. Azizi , A. Yadav , Y. Man Lau , U. Hampel , S. Roy , M. Schubert, “On the experimental investigation of gas-liquid flow in bubble columnsusing ultrafast X-ray tomography and radioactive particle tracking” ,Chemical Engineering Science, 170 (2017) 320–331.
    [42] F. Fischer , U. Hampe, “Ultra fast electron beam X-ray computed tomography for two-phase flow measurement”, Nuclear Engineering and Design, 240 (2010) 2254–2259.
    [43] N. Devanathana, D.Moslemian, M.P.Dudukovica, “Flow mapping in bubble columns using CARPT”, Chemical Engineering Science , 45 (1990) 2285–2291.
    [44] S. C. Saxena, N . S.Rao, “Heat transfer and gas holdup in a two-phase bubble column: Air-water system — Review and new data”, Experimental Thermal and Fluid Science, 2003.
    [45] F. Houshmand, Y. Peles, “Heat transfer enhancement with liquid–gas flow in microchannels and the effect of thermal boundary layer”, International Journal of Heat and Mass Transfer, 70 (2014) 725–733.
    [46] L. Zhang, Y. Wang, Z. Yu, “Experimental study of flow boiling instabilities in horizontal tubes under gas–liquid stratification condition: Effects of heat flux and inlet subcooling degree”, International Journal of Heat and Mass Transfer, 118 (2018) 1040–1045.
    [47] S. G. Kandlikar, “A General Correlation for Saturated Two-Phase Flow Boiling Heat Transfer Inside Horizontal and Vertical Tubes”, J. Heat Transfer, 112(1), 219-228 (Feb 01, 1990) (10 pages).
    [48] A. R. Betz, D. Attinger, “Can segmented flow enhance heat transfer in microchannel heat sinks”, International Journal of Heat and Mass Transfer, 53 (2010) 3683-3691.
    [49] 陳雅勤, 迷你流道氣體輔助蒸發與沸騰的實驗探討, 國立清華大學, 碩士論文, 民國105年
    [50] 取自富鑠科技股份有限公司官網
    http://flexso.com.tw/Prod_PI_Heater_0_PI.html
    [51] 取自國立台北科技大學奈米光電磁材料技術研發中心 http://www.cc.ntut.edu.tw/~wwwemo/instrument_manual/CTE.html
    [52] S. Movafaghian, J. A Jaua-Marturet, R.S. Mohan, O. Shoham,G.E. Koubab, “The effects of geometry, fluid properties and pressure on the hydrodynamics of gas-liquid cylindrical cyclone separators”, International Journal of Multiphase Flow, 26 (2000) 999-1018.
    [53] 取自均億企業高速攝影機官網
    http://www.uuinternational.com.tw/#cc1540
    [54] 景德工業股份有限公司, “Jingde category 7th Edit”, p3.
    [55] NIST, National Institute of Standards and Technology
    [56] J.P. Holman, “Experimental methods for engineers”, 2001.
    [57] 潘欽, 「沸騰熱傳與雙相流」, 台北市;俊傑書局股份有限公司, 2001, p.173.
    [58] G. Liu, Y. Wang, G. Zang, Hongtao Zhao, “Viscous Kelvin–Helmholtz instability analysis of liquid–vapor two-phase stratified flow for condensation in horizontal tubes”, International Journal of Heat and Mass Transfer, 84(2015) 592-599.

    QR CODE