研究生: |
何承豫 Ho, Cheng Yu |
---|---|
論文名稱: |
CMOS-MEMS 陀螺儀的設計與實現 Design and Implementation of CMOS-MEMS Vibrating gyroscopes |
指導教授: |
方維倫
Fang, Weileun |
口試委員: |
李昇憲
Li, Sheng Shian 蔡明翰 Tsai, Ming Han |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 82 |
中文關鍵詞: | CMOS-MEMS 、慣性感測器 、共振式陀螺儀 |
外文關鍵詞: | CMOS-MEMS, Inertia Sensor, Vibratory gyroscope |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用TSMC 0.18μm 1P6M 電路標準製程平台實現一微機電陀螺儀。而使用CMOS平台所製作的微機電陀螺儀,將會面臨在結構懸浮後,殘餘應力翹曲的問題,因此本研究期望透過整合現有文獻中,在結構設計上削減殘餘應力影響的辦法,包含對稱薄膜堆疊與純二氧化矽堆疊等,以期在不改變標準的電路製程參數下,實現一低應力翹曲結構的微機電陀螺儀,並同時仍保有CMOS平台的各式優點,如良好的繞線與線寬定義能力、可與電路及其他類型感測器整合達到單石化(Monolithic)等優勢。至於陀螺儀本身低結構敏感度的缺點,則透過CMOS製程平台小線寬的特性進行補償。
This study implements a MEMS gyroscope by TSMC 0.18μm 1P6M standard CMOS process. The structure which fabricates by this process must encounter the problem of residual stress warping. In order to reduce the deformation of the residual stress, this study integrates several structure design method in existing literatures. The design methods which be implemented in this research including symmetric stack structure and pure oxide structure are expected to achieve a structure of low residual stress warping. By this way, the fabrication parameter of this standard platform would not be modified to fit the demand of structure and the advantage of this platform would also be kept include monolithic integration capability and the good ability of electrical routing. However, for the gyroscope, the problem of low signal response may have chance to be compensated by the advantage of this platform which could make sub-micron sensing gaps.
[1]Johann G.-F. Bohnenberger, “Beschreibung einer Maschine zur Erläuterung der Gesetze der Umdrehung der Erde um ihre Axe, und der Veränderung der Lage der letzteren,” Tübinger Blätter für Naturwissenschaften und Arzeikunde, vol. 3, pp. 72-83, 1817.
[2]L. Foucault. ”Sur les phénomènes d’orientation des corps tournants entraînés par un axe fixe à la surface de la terre ─ Nouveaux signes sensibles du mouvement diurne,”Comptes rendus hebdomadaires des séances de l’Académie des Sciences (Paris), vol.35, pp. 424-427, 1852.
[3]C. Acar and A.-M. Shkel, MEMS Vibratory Gyroscopes:Structural Approaches to Improve Robustness. 1st Ed., New York, NY. Springer, 2008.
[4]N. Yazdi, F. Ayazi, and K. Najafi. ”Micromachined Inertial Sensors,” Proceedings of the IEEE, vol. 86.8, pp. 1640-1659, August, 1998.
[5]A. Sharma, M.-F. Zaman, and F. Ayazi. ”A sub-0.2°/hr bias drift micromechanicalsilicon gyroscope with automatic CMOS mode -matching,” IEEE Journal of Solid-State Circuits, vol. 77.5, pp. 1593-1608, 2009.
[6]IEEE Standard Specification Format Guide and Test Procedure for Coriolis Vibratory Gyros, IEEE Std., pp. 1-69, 2004.
[7]S.-W. Yoon, S. Lee and K. Najafi. “Vibration-induced errors in MEMS tuning fork gyroscope,” Sensor and Actuators A:Physical, vol. 180, pp. 32-44, 2012
[8]A.-M. Shkel. “Type I and type II micromachined vibrator gyroscopes,“ IEEE/ION Position Location and Navigation Symposium, San Diego, CA, USA, 2006, pp. 586-593.
[9]C.-C. Painter, and A.-M. Shkel. (2003)”Active structural error suppression in MEMS vibratory rate integrating gyroscopes.” IEEE Sensors Journal, vol. 3.5, pp. 595-606, 2003.
[10] J. Cho, J.-A. Gregory, and K. Najafi, “Single-crystal-silicon vibratory cylinderical rate integrating gyroscope (CING),” The 16th International Solid-State Sensors, Actuators and Microsystems Conference, June, 2011, pp. 2813-2816.
[11] J. Bernstein, S. Cho, A.-T. King, A. Kourepenis, P. Maciel, and M. Weinberg, ”A micromachined comb-drive tuning fork rate gyroscope,” Proceedings An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems In Micro Electro Mechanical Systems, Feb., 1993, pp. 143-148
[12] J.-Y. Cho, High-performance Micromachined Vibratory Rate- and Rate-integrating Gyroscopes, Ph.D. Thesis, Electrical Engineering, University of Michigan, 2012.
[13]S.-E. Alper and T. Akin. ” a singel-crystal silicon symmetrical and decouple MEMS gyroscope on an insulating substrate,” Journal of Microelectromechanical Systems, vol. 4, pp. 707-717, 2005.
[14]A. Sharma, F.-M. Zaman, B.-V. Amini and F. Ayazi. ”a high-Q in-plane SOI tuning fork gyroscope,” IEEE Sensors Journal, vol. 1, pp. 467- 470, 2004.
[15]S.-E. Alper, Y. Temiz, and T. Akin. "A compact angular rate sensor system using a fully decoupled silicon-on-glass MEMS gyroscope," Journal of Microelectromechanical Systems, vol. 17.6 , pp. 1418-1429, June, 2008.
[16] M.-F. Zaman, A. Sharma, Z. Hao, and F. Ayazi. “A mode-matched silicon-yaw tuning-fork gyroscope with subdegree-per-hour allan deviation bias instability.” Journal of Microelectromechanical Systems, vol. 17.6, pp.1526-1536, 2008.
[17] S. Park, and R. Horowitz, “Adaptive control for the conventional mode of operation of MEMS gyroscopes,” Journal of Microelectromechanical Systems, vol. 12.1, pp. 101-108, 2003.
[18]S. Sung, W.-T. Sung, C. Kim, S. Yun, and Y.-J. Lee, “On the mode- matched control of MEMS vibratory gyroscope via phase-domain analysis and design,” IEEE/ASME Transactions on Mechatronics, vol. 14.4, pp. 446-455, 2009.
[19]S.-W. Yoon, S. Lee, and K.l Najafi. "Vibration sensitivity analysis of MEMS vibratory ring gyroscopes," Sensors and Actuators A: Physical 171.2, pp.163-177, 2011.
[20]F. Ayazi and K. Najafi. ”A HARPSS Polysilicon vibrating ring gyroscope,” Journal of Microelectromechanical System, vol. 10.2, pp. 169-179, 2001.
[21]H. Johari and F. Ayazi. "Capacitive bulk acoustic wave silicon disk gyroscopes," IEEE international Electron Devices Meeting, 2006, pp. 1-4.
[22]J.-Y. Cho, J.-K. Woo, J. Yan, R.-L. Peterson, and K. Najafi. ”Fused-silica micro birdbath resonator gyroscope (μ-BRG),” Journal of Microelectromechanical System, vol. 23.1, pp. 66-77, Dec., 2013.
[23]S. Zotov, A. Trusov, and A.-M. Shkel. "Three-dimensional spherical shell resonator gyroscope fabricated using wafer-scale glassblowing," Journal of Microelectromechanical Systems, vol. 21.3, pp. 509-510, March, 2012.
[24] M. F. Zaman, A. Sharma, and F. Ayazi. "The resonating star gyroscope: A novel multiple-shell silicon gyroscope with sub-5 deg/hr allan deviation bias instability," IEEE Sensors Journal, vol. 9.6, pp. 616-624, June. 2009.
[25] M.-H. Tsai, C.-M. Sun, Y.-C. Liu, C. Wang, and W. Fang. “Design and application of a metal wet-etching post-process for the improvement of CMOS-MEMS capacitive sensors,” Journal of Micromechanics and Microengineering, vol. 19.10, pp. 1-7, 2009.
[26] J. Wu, G.-K. Fedder, and L.-R. Carley, “A low-noise low-offset capacitive sensing amplifier for a 50-μg/√ Hz monolithic CMOS MEMS accelerometer,” IEEE Journal of Solid-State Circuits, vol. 39.5, pp. 722-730, 2004
[27]H. Xie and G.-K. Fedder, “A CMOS-MEMS lateral-axis gyroscope,” Proc. 14th IEEE Int. Conf. Microelectromechanical Systems, Interlaken, Switzerland, Jan., 2001, pp. 162–165
[28]H. Luo, X. Zhu, H. Lakdawala, L.-R. Carley, and G.-K. Fedder. "A copper CMOS-MEMS z-axis gyroscope," The 15th IEEE International Conference on Micro Electro Mechanical Systems, 2002, pp. 631-634.
[29]H. Xie and G.- K. Fedder. “Fabrication, Characterization, and Analysis of a DRIE CMOSMEMS Gyroscope,” IEEE Sensors Journal, vol. 3.5, 2003, pp. 622-631.
[30] H. Luo, G. Zhang, L.-R. Carley, and G.-K. Fedder. “A post-CMOS micromachined lateral accelerometer,” Journal of Microelectromechanical systems, vol. 11.3, pp. 188-195, 2002.
[31]Y.-J. Huang, T.-L. Chang, and H.-P. Chou. "Study of symmetric microstructures for CMOS multilayer residual stress," Sensors and Actuators A: Physical, vol. 150.2, pp. 237-242, 2009.
[32] T.-H. Yen, M.-H. Tsai, C.-I. Chang, Y.-C. Liu, S.-S. Li, R. Chen, J.- C. Chiou and W. Fang. “Improvement of CMOS-MEMS accelerometer using the symmetric layers stacking design.” IEEE Sensors, Oct., 2011, pp. 145-148.
[33]Y.-C. Liu, M.-H. Tsai, and W. Fang. "Pure oxide structure for temperature stabilization and performance enhancement of CMOS- MEMS accelerometer," the 25th IEEE International Conference on Micro Electro Mechanical Systems, 2012, pp. 591-594.
[34]W. Geiger, B. Folkmer, J. Merz, H. Sandmaier, and W. Lang. ”A new silicon rate gyroscope,” Sensors and Actuators A: Physical, vol. 73.1, pp. 45-51, 1999
[35]W. Geiger, J. Merz, T. Fischer, B. Folkmer, H. Sandmaier, and W. Lang. “The silicon angular rate sensor system DAVED,” Sensors and Actuators A: Physical, vol. 84.3, pp. 280-284, 2000
[36]W. Geiger, W.-U. Butt, A. Gaisser, J. Frech, M. Braxmaier, T. Link, A. Kohne, P. Nommemsen, H. Sandmaier, and W. Lang, “Decoupled microgyros and the design principle DAVED”.Sensors and Actuators A: Physical, vol. 95.2, pp. 239-249, 2002
[37] C. Acar and A.-M. Shkel, "Structurally decoupled micromachined gyroscopes with post-release capacitance enhancement." Journal of Micromechanics and Microengineering vol. 15.5, pp. 1092-1101, 2005.
[38]S.-E. Alper, and T. Akin, “A symmetric surface micromachined gyroscope with decoupled oscillation modes,” Sensors and Actuators A, vol. 97, pp. 347-358, 2002.
[39]S.-E. Alper, K.-M. Silay and T. Akin. “A low-cost rate-grade nickel microgyroscope,” Sensors and Actuators A, vol. 132, pp.171-181, 2006
[40]M. Palaniapan, R.-T. Howe, and J. Yasaitis. "Performance comparison of integrated Z-axis frame microgyroscopes," the 16th IEEE International Conference on Micro Electro Mechanical Systems, Kyoto, 2003, pp. 482-485 .
[41]M. Palaniapan, R.-T. Howe, and J. Yasaitis. “Integrated surface- micromachined z-axis frame microgyroscope,” in Proc. IEDM Digest. Int. Electron Devices Meeting, Dec., 2002, pp. 203–206
[42]S.-E. Alper, Y. Temiz, and T. Akin. "A compact angular rate sensor system using a fully decoupled silicon-on-glass MEMS gyroscope." Journal of Microelectromechanical systems, vol. 17.6, pp. 1418-1429, 2008.
[43]F.-Y Lee, K.-C. Liang, E. Cheng, S.-S. Li, and W. Fang. ”Acceleration-insensitive fully-decoupled tuning fork (FDTF) MEMS vibratory gyroscope with 1°/HR BIAS instability.” The IEEE 29th IEEE International Conference on Micro Electro Mechanical Systems, Jan., 2016, pp. 946-949.
[44]T. Juneau, A.-P. Pisano, and J.-H. Smith. “Dual axis operation of a micromachined rate gyroscope,” The International IEEE Conference on Solid State Sensors and Actuators, June, 1997, pp. 883-886.
[45] B. Lee, S. Seok, and K. Chun, “A study on wafer level vacuum packaging for MEMS devices,” Journal of micromechanics and microengineering, vol.13.5, pp. 663-669, 2003.
[46]C. Guo, E. Tatar, and G.-K. Fedder. "Large-displacement parametric resonance using a shaped comb drive," the 26th IEEE International Conference on Micro Electro Mechanical Systems, 2013, pp.173-176.
[47]R.-D. Blevins, Formulas for Natural Frequency and Mode Shape, Krieger Pub Co., 1995.
[48] K. Liu, W. Zhang, W. Chen, K Li, F. Dai, F. Cui, X. Wu, G. Ma and Q. Xiao. “The development of micro-gyroscope technology,” J. Micromech. Microeng., vol. 19, pp. 1–29, 2009.
[49]J. Ren, Design and implementation of MEMS Vibratory Gyroscope, M.E. thesis, National Tsing Hua University (ROC), 2015
[50] C.-O. Chang, G.-E, Chang, C.-S. Chou, W.-T.C. Chien, and P.-C. Chen, “In-plane free vibration of a single-crystal silicon ring”, International Journal of Solids and Structures, vol. 45.24, pp. 6114-6132, 2008.
[51]J. Ren, C.-Y. Liu, M.-H. Li, C.-C. Chen, C.-Y. Chen, C.-S. Li, S.-S. Li "A mode-matching 130-kHz ring-coupled gyroscope with 225 ppm initial driving/sensing mode frequency splitting." Transducers, 2015, pp. 1057-1060.